Some sharp inequalities for norms in $$\mathbb {R}^n$$ and $$\mathbb {C}^n$$

Stefan Gerdjikov, Nikolai Nikolov
{"title":"Some sharp inequalities for norms in $$\\mathbb {R}^n$$ and $$\\mathbb {C}^n$$","authors":"Stefan Gerdjikov, Nikolai Nikolov","doi":"10.1007/s00605-024-02004-7","DOIUrl":null,"url":null,"abstract":"<p>The main result of this paper is that for any norm on a complex or real <i>n</i>-dimensional linear space, every extremal basis satisfies inverted triangle inequality with scaling factor <span>\\(2^n-1\\)</span>. Furthermore, the constant <span>\\(2^n-1\\)</span> is tight. We also prove that the norms of any two extremal bases are comparable with a factor of <span>\\(2^n-1\\)</span>, which, intuitively, means that any two extremal bases are quantitatively equivalent with the stated tolerance.</p>","PeriodicalId":18913,"journal":{"name":"Monatshefte für Mathematik","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Monatshefte für Mathematik","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00605-024-02004-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The main result of this paper is that for any norm on a complex or real n-dimensional linear space, every extremal basis satisfies inverted triangle inequality with scaling factor \(2^n-1\). Furthermore, the constant \(2^n-1\) is tight. We also prove that the norms of any two extremal bases are comparable with a factor of \(2^n-1\), which, intuitively, means that any two extremal bases are quantitatively equivalent with the stated tolerance.

$$\mathbb {R}^n$$ 和 $$\mathbb {C}^n$$ 中规范的一些尖锐不等式
本文的主要结果是,对于复数或实数 n 维线性空间上的任意规范,每个极值基础都满足具有缩放因子 \(2^n-1\) 的倒三角不等式。此外,常数 \(2^n-1\) 是紧密的。我们还证明了任意两个极值基的规范是以\(2^n-1\)的因子进行比较的,直观地说,这意味着任意两个极值基在数量上是等价的,具有所述的容差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信