On combinatorial properties of Gruenberg–Kegel graphs of finite groups

Mingzhu Chen, Ilya Gorshkov, Natalia V. Maslova, Nanying Yang
{"title":"On combinatorial properties of Gruenberg–Kegel graphs of finite groups","authors":"Mingzhu Chen, Ilya Gorshkov, Natalia V. Maslova, Nanying Yang","doi":"10.1007/s00605-024-02005-6","DOIUrl":null,"url":null,"abstract":"<p>If <i>G</i> is a finite group, then the spectrum <span>\\(\\omega (G)\\)</span> is the set of all element orders of <i>G</i>. The prime spectrum <span>\\(\\pi (G)\\)</span> is the set of all primes belonging to <span>\\(\\omega (G)\\)</span>. A simple graph <span>\\(\\Gamma (G)\\)</span> whose vertex set is <span>\\(\\pi (G)\\)</span> and in which two distinct vertices <i>r</i> and <i>s</i> are adjacent if and only if <span>\\(rs \\in \\omega (G)\\)</span> is called the Gruenberg–Kegel graph or the prime graph of <i>G</i>. In this paper, we prove that if <i>G</i> is a group of even order, then the set of vertices which are non-adjacent to 2 in <span>\\(\\Gamma (G)\\)</span> forms a union of cliques. Moreover, we decide when a strongly regular graph is isomorphic to the Gruenberg–Kegel graph of a finite group.</p>","PeriodicalId":18913,"journal":{"name":"Monatshefte für Mathematik","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Monatshefte für Mathematik","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00605-024-02005-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

If G is a finite group, then the spectrum \(\omega (G)\) is the set of all element orders of G. The prime spectrum \(\pi (G)\) is the set of all primes belonging to \(\omega (G)\). A simple graph \(\Gamma (G)\) whose vertex set is \(\pi (G)\) and in which two distinct vertices r and s are adjacent if and only if \(rs \in \omega (G)\) is called the Gruenberg–Kegel graph or the prime graph of G. In this paper, we prove that if G is a group of even order, then the set of vertices which are non-adjacent to 2 in \(\Gamma (G)\) forms a union of cliques. Moreover, we decide when a strongly regular graph is isomorphic to the Gruenberg–Kegel graph of a finite group.

论有限群的格伦伯格-凯格尔图的组合特性
如果 G 是一个有限群,那么谱 \(\omega (G)\) 是 G 的所有元素阶的集合。素数谱 \(\pi (G)\) 是属于 \(\omega (G)\) 的所有素数的集合。一个简单的图(\(\Gamma (G)\))的顶点集合是(\(\pi (G)\)),并且其中两个不同的顶点 r 和 s 相邻,当且仅当(\(rs \in \omega (G)\))是且仅当(\(rs \in \omega (G)\)),这个图被称为格伦伯格-凯格尔图或 G 的素数图。在本文中,我们证明了如果 G 是偶数阶群,那么在 \(\Gamma (G)\) 中与 2 不相邻的顶点集合构成了小群的联合。此外,我们还确定了强规则图何时与有限群的格伦伯格-凯格尔图同构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信