Longitudinal Modularity, a Modularity for Link Streams

Victor Brabant, Yasaman Asgari, Pierre Borgnat, Angela Bonifati, Remy Cazabet
{"title":"Longitudinal Modularity, a Modularity for Link Streams","authors":"Victor Brabant, Yasaman Asgari, Pierre Borgnat, Angela Bonifati, Remy Cazabet","doi":"arxiv-2408.16877","DOIUrl":null,"url":null,"abstract":"Temporal networks are commonly used to model real-life phenomena. When these\nphenomena represent interactions and are captured at a fine-grained temporal\nresolution, they are modeled as link streams. Community detection is an\nessential network analysis task. Although many methods exist for static\nnetworks, and some methods have been developed for temporal networks\nrepresented as sequences of snapshots, few works can handle link streams. This\narticle introduces the first adaptation of the well-known Modularity quality\nfunction to link streams. Unlike existing methods, it is independent of the\ntime scale of analysis. After introducing the quality function, and its\nrelation to existing static and dynamic definitions of Modularity, we show\nexperimentally its relevance for dynamic community evaluation.","PeriodicalId":501032,"journal":{"name":"arXiv - CS - Social and Information Networks","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Social and Information Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.16877","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Temporal networks are commonly used to model real-life phenomena. When these phenomena represent interactions and are captured at a fine-grained temporal resolution, they are modeled as link streams. Community detection is an essential network analysis task. Although many methods exist for static networks, and some methods have been developed for temporal networks represented as sequences of snapshots, few works can handle link streams. This article introduces the first adaptation of the well-known Modularity quality function to link streams. Unlike existing methods, it is independent of the time scale of analysis. After introducing the quality function, and its relation to existing static and dynamic definitions of Modularity, we show experimentally its relevance for dynamic community evaluation.
纵向模块化,链接流模块化
时态网络通常用于模拟现实生活中的现象。当这些现象代表交互作用并以精细的时间分辨率捕获时,它们被建模为链接流。群落检测是一项重要的网络分析任务。虽然有很多方法适用于静态网络,也有一些方法适用于以快照序列表示的时态网络,但能处理链接流的方法却寥寥无几。本文首次介绍了著名的模块化质量函数在链接流中的应用。与现有方法不同的是,它与分析的时间尺度无关。在介绍了质量函数及其与现有模块化静态和动态定义的关系之后,我们通过实验展示了它与动态社区评估的相关性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信