Polynomial 2D Green Coordinates for High-order Cages

Shibo Liu, Ligang Liu, Xiao-Ming Fu
{"title":"Polynomial 2D Green Coordinates for High-order Cages","authors":"Shibo Liu, Ligang Liu, Xiao-Ming Fu","doi":"arxiv-2408.06831","DOIUrl":null,"url":null,"abstract":"We propose conformal polynomial coordinates for 2D closed high-order cages,\nwhich consist of polynomial curves of any order. The coordinates enable the\ntransformation of the input polynomial curves into polynomial curves of any\norder. We extend the classical 2D Green coordinates to define our coordinates,\nthereby leading to cage-aware conformal harmonic deformations. We extensively\ntest our method on various 2D deformations, allowing users to manipulate the\n\\Bezier control points to easily generate the desired deformation.","PeriodicalId":501570,"journal":{"name":"arXiv - CS - Computational Geometry","volume":"2 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Computational Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.06831","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We propose conformal polynomial coordinates for 2D closed high-order cages, which consist of polynomial curves of any order. The coordinates enable the transformation of the input polynomial curves into polynomial curves of any order. We extend the classical 2D Green coordinates to define our coordinates, thereby leading to cage-aware conformal harmonic deformations. We extensively test our method on various 2D deformations, allowing users to manipulate the \Bezier control points to easily generate the desired deformation.
高阶笼的多项式二维绿色坐标
我们提出了由任意阶多项式曲线组成的二维封闭高阶笼的共形多项式坐标。这些坐标可以将输入的多项式曲线转换成任意阶的多项式曲线。我们扩展了经典的二维格林坐标来定义我们的坐标,从而实现了笼感共形谐波变形。我们在各种二维变形上广泛测试了我们的方法,允许用户操纵贝塞尔控制点,轻松生成所需的变形。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信