Critical Point Extraction from Multivariate Functional Approximation

Guanqun Ma, David Lenz, Tom Peterka, Hanqi Guo, Bei Wang
{"title":"Critical Point Extraction from Multivariate Functional Approximation","authors":"Guanqun Ma, David Lenz, Tom Peterka, Hanqi Guo, Bei Wang","doi":"arxiv-2408.13193","DOIUrl":null,"url":null,"abstract":"Advances in high-performance computing require new ways to represent\nlarge-scale scientific data to support data storage, data transfers, and data\nanalysis within scientific workflows. Multivariate functional approximation\n(MFA) has recently emerged as a new continuous meshless representation that\napproximates raw discrete data with a set of piecewise smooth functions. An MFA\nmodel of data thus offers a compact representation and supports high-order\nevaluation of values and derivatives anywhere in the domain. In this paper, we\npresent CPE-MFA, the first critical point extraction framework designed for MFA\nmodels of large-scale, high-dimensional data. CPE-MFA extracts critical points\ndirectly from an MFA model without the need for discretization or resampling.\nThis is the first step toward enabling continuous implicit models such as MFA\nto support topological data analysis at scale.","PeriodicalId":501570,"journal":{"name":"arXiv - CS - Computational Geometry","volume":"271 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Computational Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.13193","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Advances in high-performance computing require new ways to represent large-scale scientific data to support data storage, data transfers, and data analysis within scientific workflows. Multivariate functional approximation (MFA) has recently emerged as a new continuous meshless representation that approximates raw discrete data with a set of piecewise smooth functions. An MFA model of data thus offers a compact representation and supports high-order evaluation of values and derivatives anywhere in the domain. In this paper, we present CPE-MFA, the first critical point extraction framework designed for MFA models of large-scale, high-dimensional data. CPE-MFA extracts critical points directly from an MFA model without the need for discretization or resampling. This is the first step toward enabling continuous implicit models such as MFA to support topological data analysis at scale.
从多元函数近似中提取临界点
高性能计算的发展需要新的方法来表示大规模科学数据,以支持科学工作流中的数据存储、数据传输和数据分析。多变量函数逼近(MFA)是最近出现的一种新的连续无网格表示方法,它可以用一组片断平滑函数逼近原始离散数据。因此,MFA 数据模型提供了一种紧凑的表示方法,并支持对域中任何位置的值和导数进行高估值。在本文中,我们介绍了 CPE-MFA,这是第一个专为大规模、高维数据的 MFA 模型而设计的临界点提取框架。CPE-MFA 可直接从 MFA 模型中提取临界点,而无需离散化或重新采样。这是使 MFA 等连续隐式模型支持大规模拓扑数据分析的第一步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信