Best of two worlds: Cartesian sampling and volume computation for distance-constrained configuration spaces using Cayley coordinates

Yichi Zhang, Meera Sitharam
{"title":"Best of two worlds: Cartesian sampling and volume computation for distance-constrained configuration spaces using Cayley coordinates","authors":"Yichi Zhang, Meera Sitharam","doi":"arxiv-2408.16946","DOIUrl":null,"url":null,"abstract":"Volume calculation of configurational spaces acts as a vital part in\nconfigurational entropy calculation, which contributes towards calculating free\nenergy landscape for molecular systems. In this article, we present our\nsampling-based volume computation method using distance-based Cayley\ncoordinate, mitigating drawbacks: our method guarantees that the sampling\nprocedure stays in lower-dimensional coordinate space (instead of\nhigher-dimensional Cartesian space) throughout the whole process; and our\nmapping function, utilizing Cayley parameterization, can be applied in both\ndirections with low computational cost. Our method uniformly samples and\ncomputes a discrete volume measure of a Cartesian configuration space of point\nsets satisfying systems of distance inequality constraints. The systems belong\nto a large natural class whose feasible configuration spaces are effectively\nlower dimensional subsets of high dimensional ambient space. Their topological\ncomplexity makes discrete volume computation challenging, yet necessary in\nseveral application scenarios including free energy calculation in soft matter\nassembly modeling. The algorithm runs in linear time and empirically sub-linear\nspace in the number of grid hypercubes (used to define the discrete volume\nmeasure) \\textit{that intersect} the configuration space. In other words, the\nnumber of wasted grid cube visits is insignificant compared to prevailing\nmethods typically based on gradient descent. Specifically, the traversal stays\nwithin the feasible configuration space by viewing it as a branched covering,\nusing a recent theory of Cayley or distance coordinates to convexify the base\nspace, and by employing a space-efficient, frontier hypercube traversal data\nstructure. A software implementation and comparison with existing methods is\nprovided.","PeriodicalId":501570,"journal":{"name":"arXiv - CS - Computational Geometry","volume":"42 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Computational Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.16946","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Volume calculation of configurational spaces acts as a vital part in configurational entropy calculation, which contributes towards calculating free energy landscape for molecular systems. In this article, we present our sampling-based volume computation method using distance-based Cayley coordinate, mitigating drawbacks: our method guarantees that the sampling procedure stays in lower-dimensional coordinate space (instead of higher-dimensional Cartesian space) throughout the whole process; and our mapping function, utilizing Cayley parameterization, can be applied in both directions with low computational cost. Our method uniformly samples and computes a discrete volume measure of a Cartesian configuration space of point sets satisfying systems of distance inequality constraints. The systems belong to a large natural class whose feasible configuration spaces are effectively lower dimensional subsets of high dimensional ambient space. Their topological complexity makes discrete volume computation challenging, yet necessary in several application scenarios including free energy calculation in soft matter assembly modeling. The algorithm runs in linear time and empirically sub-linear space in the number of grid hypercubes (used to define the discrete volume measure) \textit{that intersect} the configuration space. In other words, the number of wasted grid cube visits is insignificant compared to prevailing methods typically based on gradient descent. Specifically, the traversal stays within the feasible configuration space by viewing it as a branched covering, using a recent theory of Cayley or distance coordinates to convexify the base space, and by employing a space-efficient, frontier hypercube traversal data structure. A software implementation and comparison with existing methods is provided.
两全其美:使用 Cayley 坐标为距离受限的配置空间进行笛卡尔采样和体积计算
构型空间的体积计算是构型熵计算的重要组成部分,有助于计算分子系统的自由能谱。在本文中,我们介绍了基于采样的体积计算方法,该方法使用基于距离的 Cayley 坐标,可减轻以下缺点:我们的方法可保证采样过程全程停留在低维坐标空间(而不是高维笛卡尔空间);我们的映射函数利用 Cayley 参数化,可同时应用于两个方向,且计算成本较低。我们的方法对满足距离不等式约束系统的点集的笛卡尔配置空间进行均匀采样并计算离散体积度量。这些系统属于一个大的自然类,其可行的配置空间实际上是高维环境空间的低维子集。它们的拓扑复杂性使得离散体积计算具有挑战性,但在软物质组装建模的自由能计算等多个应用场景中又是必要的。该算法的运行时间为线性时间,经验上与配置空间相交的网格超立方体(用于定义离散体积)的数量呈亚线性关系。换句话说,与基于梯度下降的主流方法相比,浪费的网格立方体访问次数微不足道。具体来说,该遍历方法将可行配置空间视为一个分支覆盖,利用最新的 Cayley 或距离坐标理论凸化基底空间,并采用空间效率高的前沿超立方体遍历数据结构,从而保持在可行配置空间内。本文提供了软件实现方法以及与现有方法的比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信