When Heterophily Meets Heterogeneous Graphs: Latent Graphs Guided Unsupervised Representation Learning

Zhixiang Shen, Zhao Kang
{"title":"When Heterophily Meets Heterogeneous Graphs: Latent Graphs Guided Unsupervised Representation Learning","authors":"Zhixiang Shen, Zhao Kang","doi":"arxiv-2409.00687","DOIUrl":null,"url":null,"abstract":"Unsupervised heterogeneous graph representation learning (UHGRL) has gained\nincreasing attention due to its significance in handling practical graphs\nwithout labels. However, heterophily has been largely ignored, despite its\nubiquitous presence in real-world heterogeneous graphs. In this paper, we\ndefine semantic heterophily and propose an innovative framework called Latent\nGraphs Guided Unsupervised Representation Learning (LatGRL) to handle this\nproblem. First, we develop a similarity mining method that couples global\nstructures and attributes, enabling the construction of fine-grained homophilic\nand heterophilic latent graphs to guide the representation learning. Moreover,\nwe propose an adaptive dual-frequency semantic fusion mechanism to address the\nproblem of node-level semantic heterophily. To cope with the massive scale of\nreal-world data, we further design a scalable implementation. Extensive\nexperiments on benchmark datasets validate the effectiveness and efficiency of\nour proposed framework. The source code and datasets have been made available\nat https://github.com/zxlearningdeep/LatGRL.","PeriodicalId":501032,"journal":{"name":"arXiv - CS - Social and Information Networks","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Social and Information Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.00687","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Unsupervised heterogeneous graph representation learning (UHGRL) has gained increasing attention due to its significance in handling practical graphs without labels. However, heterophily has been largely ignored, despite its ubiquitous presence in real-world heterogeneous graphs. In this paper, we define semantic heterophily and propose an innovative framework called Latent Graphs Guided Unsupervised Representation Learning (LatGRL) to handle this problem. First, we develop a similarity mining method that couples global structures and attributes, enabling the construction of fine-grained homophilic and heterophilic latent graphs to guide the representation learning. Moreover, we propose an adaptive dual-frequency semantic fusion mechanism to address the problem of node-level semantic heterophily. To cope with the massive scale of real-world data, we further design a scalable implementation. Extensive experiments on benchmark datasets validate the effectiveness and efficiency of our proposed framework. The source code and datasets have been made available at https://github.com/zxlearningdeep/LatGRL.
当异质性遇到异质图:潜在图引导的无监督表征学习
无监督异质图表示学习(UHGRL)在处理无标签的实际图方面具有重要意义,因此受到越来越多的关注。然而,尽管异质图在现实世界的异质图中无处不在,但异质图在很大程度上却被忽视了。在本文中,我们定义了语义异质性,并提出了一个名为 "潜在图引导的无监督表征学习(LatGRL)"的创新框架来处理这个问题。首先,我们开发了一种将全局结构和属性结合起来的相似性挖掘方法,从而能够构建细粒度的同亲缘和异亲缘潜在图来指导表征学习。此外,我们还提出了一种自适应双频语义融合机制,以解决节点级语义异质性问题。为了应对现实世界的海量数据,我们进一步设计了一种可扩展的实现方法。在基准数据集上进行的广泛实验验证了我们提出的框架的有效性和效率。源代码和数据集已发布在 https://github.com/zxlearningdeep/LatGRL 上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信