An experimental study on the wear performance of 3D printed polylactic acid and carbon fiber reinforced polylactic acid parts: Effect of infill rate and water absorption time

IF 4.8 2区 材料科学 Q2 MATERIALS SCIENCE, COMPOSITES
Berkay Ergene, Yiğit Emre İnci, Batuhan Çetintaş, Birol Daysal
{"title":"An experimental study on the wear performance of 3D printed polylactic acid and carbon fiber reinforced polylactic acid parts: Effect of infill rate and water absorption time","authors":"Berkay Ergene, Yiğit Emre İnci, Batuhan Çetintaş, Birol Daysal","doi":"10.1002/pc.28993","DOIUrl":null,"url":null,"abstract":"<jats:label/>Rapid prototyping, also known as additive manufacturing, is a nascent technology that is gaining traction in the context of environmental concerns and waste reduction, as well as the growing trend towards customized design. The additive manufacturing method, which has applications in diverse fields such as aviation, architecture, biomedical and automotive engineering, has also begun to be utilized in the construction of yachts and yacht hulls within the maritime industry. In this experimental study, the influences of sea water on polylactic acid (PLA) and carbon fiber reinforced polylactic acid (PLA/CF) parts manufactured at different infill rates (20%, 60% and 100%) were investigated. The parts were exposed to sea water for three different periods (1, 5, and 10 days) and subsequently subjected to wear tests. The dimensional accuracy, surface roughness, hardness, water absorption, volume loss, and friction coefficient of parts were measured and calculated. Additionally, the worn surfaces of the parts were investigated using field emission scanning electron microscope (FESEM) images. The findings indicate that PLA and PLA/CF parts can be produced with high dimensional accuracy. Furthermore, it can be reported that the water absorption of PLA/CF parts increased, particularly with an increase in the infill rate, while the volume loss decreased. Obtained results indicate the necessity of optimizing the 3D printing parameters and the relationship between the ambient conditions and the wear performance of the 3D printed parts.Highlights<jats:list list-type=\"bullet\"> <jats:list-item>3D printing is a highly promising method for the production of polymer composites.</jats:list-item> <jats:list-item>A pioneering study into the effect of infill rate and water absorption on the wear performance.</jats:list-item> <jats:list-item>Coefficient of friction values of PLA and PLA/CF parts ranged between 0.37 and 0.75.</jats:list-item> <jats:list-item>PLA/CF mostly exhibited higher volume loss than PLA with water absorption.</jats:list-item> <jats:list-item>Volume loss declines with a raise in the infill rate from 20% to 100%.</jats:list-item> </jats:list>","PeriodicalId":20375,"journal":{"name":"Polymer Composites","volume":null,"pages":null},"PeriodicalIF":4.8000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer Composites","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/pc.28993","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0

Abstract

Rapid prototyping, also known as additive manufacturing, is a nascent technology that is gaining traction in the context of environmental concerns and waste reduction, as well as the growing trend towards customized design. The additive manufacturing method, which has applications in diverse fields such as aviation, architecture, biomedical and automotive engineering, has also begun to be utilized in the construction of yachts and yacht hulls within the maritime industry. In this experimental study, the influences of sea water on polylactic acid (PLA) and carbon fiber reinforced polylactic acid (PLA/CF) parts manufactured at different infill rates (20%, 60% and 100%) were investigated. The parts were exposed to sea water for three different periods (1, 5, and 10 days) and subsequently subjected to wear tests. The dimensional accuracy, surface roughness, hardness, water absorption, volume loss, and friction coefficient of parts were measured and calculated. Additionally, the worn surfaces of the parts were investigated using field emission scanning electron microscope (FESEM) images. The findings indicate that PLA and PLA/CF parts can be produced with high dimensional accuracy. Furthermore, it can be reported that the water absorption of PLA/CF parts increased, particularly with an increase in the infill rate, while the volume loss decreased. Obtained results indicate the necessity of optimizing the 3D printing parameters and the relationship between the ambient conditions and the wear performance of the 3D printed parts.Highlights 3D printing is a highly promising method for the production of polymer composites. A pioneering study into the effect of infill rate and water absorption on the wear performance. Coefficient of friction values of PLA and PLA/CF parts ranged between 0.37 and 0.75. PLA/CF mostly exhibited higher volume loss than PLA with water absorption. Volume loss declines with a raise in the infill rate from 20% to 100%.

Abstract Image

关于 3D 打印聚乳酸和碳纤维增强聚乳酸部件磨损性能的实验研究:填充率和吸水时间的影响
快速成型技术(又称快速成型制造)是一项新兴技术,在关注环境、减少浪费以及定制化设计趋势日益增长的背景下,该技术正获得越来越多的关注。增材制造方法在航空、建筑、生物医学和汽车工程等多个领域都有应用,在航海业中也开始用于游艇和游艇船体的建造。在这项实验研究中,研究了海水对以不同填充率(20%、60% 和 100%)制造的聚乳酸(PLA)和碳纤维增强聚乳酸(PLA/CF)部件的影响。这些部件在海水中暴露了三个不同的时间段(1 天、5 天和 10 天),随后进行了磨损测试。对零件的尺寸精度、表面粗糙度、硬度、吸水率、体积损失和摩擦系数进行了测量和计算。此外,还使用场发射扫描电子显微镜(FESEM)图像对零件的磨损表面进行了研究。研究结果表明,聚乳酸和聚乳酸/纤维素制备的零件具有很高的尺寸精度。此外,还发现聚乳酸/纤维素部件的吸水性增加了,尤其是随着填充率的增加,而体积损失却减少了。获得的结果表明,有必要优化 3D 打印参数以及环境条件与 3D 打印部件磨损性能之间的关系。关于填充率和吸水性对磨损性能影响的开创性研究。PLA 和 PLA/CF 零件的摩擦系数值介于 0.37 和 0.75 之间。与吸水后的聚乳酸相比,聚乳酸/纤维素的体积损失更大。随着填充率从 20% 提高到 100%,体积损失会逐渐减少。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Polymer Composites
Polymer Composites 工程技术-材料科学:复合
CiteScore
7.50
自引率
32.70%
发文量
673
审稿时长
3.1 months
期刊介绍: Polymer Composites is the engineering and scientific journal serving the fields of reinforced plastics and polymer composites including research, production, processing, and applications. PC brings you the details of developments in this rapidly expanding area of technology long before they are commercial realities.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信