{"title":"The Generalized Toeplitz Determinants for a Class of Holomorphic Mappings in Several Complex Variables","authors":"Qinghua Xu, Ting Jiang","doi":"10.1007/s11785-024-01585-3","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we define the generalized Toeplitz determinants whose entries are the coefficients of holomorphic functions on the unit disk <span>\\(\\mathbb {U}\\)</span> with <i>k</i>-fold symmetric, and then we establish the sharp bounds of the generalized determinants formed over the related terms of homogeneous expansion of a class of holomorphic mappings defined on the unit ball of a complex Banach space. The results presented here would generalize the corresponding results given by Giri and Kumar (Complex Anal Oper Theory 17(6):86, 2023).</p>","PeriodicalId":50654,"journal":{"name":"Complex Analysis and Operator Theory","volume":"38 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Complex Analysis and Operator Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11785-024-01585-3","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we define the generalized Toeplitz determinants whose entries are the coefficients of holomorphic functions on the unit disk \(\mathbb {U}\) with k-fold symmetric, and then we establish the sharp bounds of the generalized determinants formed over the related terms of homogeneous expansion of a class of holomorphic mappings defined on the unit ball of a complex Banach space. The results presented here would generalize the corresponding results given by Giri and Kumar (Complex Anal Oper Theory 17(6):86, 2023).
期刊介绍:
Complex Analysis and Operator Theory (CAOT) is devoted to the publication of current research developments in the closely related fields of complex analysis and operator theory as well as in applications to system theory, harmonic analysis, probability, statistics, learning theory, mathematical physics and other related fields. Articles using the theory of reproducing kernel spaces are in particular welcomed.