Extended Joint Numerical Radius of the Spherical Aluthge Transform

Pub Date : 2024-08-14 DOI:10.1007/s11785-024-01583-5
Bouchra Aharmim, Yassine Labbane
{"title":"Extended Joint Numerical Radius of the Spherical Aluthge Transform","authors":"Bouchra Aharmim, Yassine Labbane","doi":"10.1007/s11785-024-01583-5","DOIUrl":null,"url":null,"abstract":"<p>Let <span>\\(T=(T_{1}, T_{2},\\ldots , T_{n})\\)</span> be a commuting <span>\\(n-\\)</span>tuple of operators on a complex Hilbert space <i>H</i>. We define the extended joint numerical radius of <i>T</i> by </p><span>$$\\begin{aligned} J_{t}w_{(N, v)}(T)=\\sup \\limits _{(\\lambda _{1}, \\lambda _{2}, \\ldots , \\lambda _{n})\\in \\overline{B_{n}}(0, 1)}w_{(N, v)}\\bigg (\\sum \\limits _{i=1}^{n}\\lambda _{i}T_{i}\\bigg ), \\end{aligned}$$</span><p>where <i>N</i> is any norm on <i>B</i>(<i>H</i>), </p><span>$$w_{(N, v)}(S)=\\sup \\limits _{\\theta \\in \\mathbb {R}}N(ve^{i\\theta }S+(1-v)e^{-i\\theta }S^{*}), S\\in B(H), v\\in [0, 1],$$</span><p>and <span>\\(\\overline{B_{n}}(0, 1)\\)</span> denotes the closure of the unit ball in <span>\\(\\mathbb {C}^{n}\\)</span> with respect to the euclidean norm, i.e. </p><span>$$\\overline{B_{n}}(0, 1)=\\left\\{ \\lambda =(\\lambda _{1}, \\ldots , \\lambda _{n})\\in \\mathbb {C}^{n}; \\parallel \\lambda \\parallel _{2}=\\bigg (\\sum \\limits _{i=1}^{n}|\\lambda _{i}|^{2}\\bigg )^{\\frac{1}{2}}\\le 1 \\right\\} .$$</span><p>In this paper, we prove several inequalities for the extended joint numerical radius involving the spherical Aluthge transform in the case where <i>N</i> is the operator norm of <i>B</i>(<i>H</i>) or the numerical radius.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11785-024-01583-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Let \(T=(T_{1}, T_{2},\ldots , T_{n})\) be a commuting \(n-\)tuple of operators on a complex Hilbert space H. We define the extended joint numerical radius of T by

$$\begin{aligned} J_{t}w_{(N, v)}(T)=\sup \limits _{(\lambda _{1}, \lambda _{2}, \ldots , \lambda _{n})\in \overline{B_{n}}(0, 1)}w_{(N, v)}\bigg (\sum \limits _{i=1}^{n}\lambda _{i}T_{i}\bigg ), \end{aligned}$$

where N is any norm on B(H),

$$w_{(N, v)}(S)=\sup \limits _{\theta \in \mathbb {R}}N(ve^{i\theta }S+(1-v)e^{-i\theta }S^{*}), S\in B(H), v\in [0, 1],$$

and \(\overline{B_{n}}(0, 1)\) denotes the closure of the unit ball in \(\mathbb {C}^{n}\) with respect to the euclidean norm, i.e.

$$\overline{B_{n}}(0, 1)=\left\{ \lambda =(\lambda _{1}, \ldots , \lambda _{n})\in \mathbb {C}^{n}; \parallel \lambda \parallel _{2}=\bigg (\sum \limits _{i=1}^{n}|\lambda _{i}|^{2}\bigg )^{\frac{1}{2}}\le 1 \right\} .$$

In this paper, we prove several inequalities for the extended joint numerical radius involving the spherical Aluthge transform in the case where N is the operator norm of B(H) or the numerical radius.

分享
查看原文
扩展的球面阿鲁什变换联合数值半径
让(T=(T_{1}, T_{2}, \ldots , T_{n}))是复希尔伯特空间 H 上的一个共交(n-\)算子元组。我们用 $$\begin{aligned} 来定义 T 的扩展联合数值半径。J_{t}w_{(N, v)}(T)=sup \limits _{(\lambda _{1}, \lambda _{2}, \ldots , \lambda _{n})\in \overline{B_{n}}(0, 1)}w_{(N、v)}\bigg (\sum \limits _{i=1}^{n}\lambda _{i}T_{i}\bigg ), \end{aligned}$$ 其中 N 是 B(H)上的任意规范,$$w_{(N、v)}(S)=sup \limits _\theta \in \mathbb {R}}N(ve^{i\theta }S+(1-v)e^{-i\theta }S^{*}), S\in B(H), v\in [0, 1]、$$and \(\overline{B_{n}}(0, 1)\) denotes the closure of the unit ball in \(\mathbb {C}^{n}\) with respect to the euclidean norm, i..e.$$\overline{B_{n}}(0, 1)=\left\{ \lambda =(\lambda _{1}, \ldots , \lambda _{n})\in \mathbb {C}^{n};\parallel \lambda \parallel _{2}=\bigg (\sum \limits _{i=1}^{n}|\lambda _{i}|^{2}\bigg )^{\frac{1}{2}}le 1 \right\} .$$在本文中,我们证明了在 N 是 B(H) 的算子规范或数值半径的情况下,涉及球面 Aluthge 变换的扩展联合数值半径的几个不等式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信