{"title":"Extended Joint Numerical Radius of the Spherical Aluthge Transform","authors":"Bouchra Aharmim, Yassine Labbane","doi":"10.1007/s11785-024-01583-5","DOIUrl":null,"url":null,"abstract":"<p>Let <span>\\(T=(T_{1}, T_{2},\\ldots , T_{n})\\)</span> be a commuting <span>\\(n-\\)</span>tuple of operators on a complex Hilbert space <i>H</i>. We define the extended joint numerical radius of <i>T</i> by </p><span>$$\\begin{aligned} J_{t}w_{(N, v)}(T)=\\sup \\limits _{(\\lambda _{1}, \\lambda _{2}, \\ldots , \\lambda _{n})\\in \\overline{B_{n}}(0, 1)}w_{(N, v)}\\bigg (\\sum \\limits _{i=1}^{n}\\lambda _{i}T_{i}\\bigg ), \\end{aligned}$$</span><p>where <i>N</i> is any norm on <i>B</i>(<i>H</i>), </p><span>$$w_{(N, v)}(S)=\\sup \\limits _{\\theta \\in \\mathbb {R}}N(ve^{i\\theta }S+(1-v)e^{-i\\theta }S^{*}), S\\in B(H), v\\in [0, 1],$$</span><p>and <span>\\(\\overline{B_{n}}(0, 1)\\)</span> denotes the closure of the unit ball in <span>\\(\\mathbb {C}^{n}\\)</span> with respect to the euclidean norm, i.e. </p><span>$$\\overline{B_{n}}(0, 1)=\\left\\{ \\lambda =(\\lambda _{1}, \\ldots , \\lambda _{n})\\in \\mathbb {C}^{n}; \\parallel \\lambda \\parallel _{2}=\\bigg (\\sum \\limits _{i=1}^{n}|\\lambda _{i}|^{2}\\bigg )^{\\frac{1}{2}}\\le 1 \\right\\} .$$</span><p>In this paper, we prove several inequalities for the extended joint numerical radius involving the spherical Aluthge transform in the case where <i>N</i> is the operator norm of <i>B</i>(<i>H</i>) or the numerical radius.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11785-024-01583-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Let \(T=(T_{1}, T_{2},\ldots , T_{n})\) be a commuting \(n-\)tuple of operators on a complex Hilbert space H. We define the extended joint numerical radius of T by
In this paper, we prove several inequalities for the extended joint numerical radius involving the spherical Aluthge transform in the case where N is the operator norm of B(H) or the numerical radius.