On the Structure of Real Operators

IF 0.7 4区 数学 Q2 MATHEMATICS
Ying Yao, Luoyi Shi
{"title":"On the Structure of Real Operators","authors":"Ying Yao, Luoyi Shi","doi":"10.1007/s11785-024-01592-4","DOIUrl":null,"url":null,"abstract":"<p>An operator <i>T</i> on a complex separable Hilbert space <span>\\({\\mathcal {H}}\\)</span> is called a real operator if <i>T</i> can be represented as a real matrix relative to some orthonormal basis of <span>\\({\\mathcal {H}}\\)</span>. In this paper, we provide descriptions of concrete real operators, such as real normal operators, real partial isometries, and real Toeplitz operators, among others. Furthermore, we present several structure theorems of real operators, including the polar decomposition, the Riesz decomposition and the block structure.</p>","PeriodicalId":50654,"journal":{"name":"Complex Analysis and Operator Theory","volume":"59 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Complex Analysis and Operator Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11785-024-01592-4","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

An operator T on a complex separable Hilbert space \({\mathcal {H}}\) is called a real operator if T can be represented as a real matrix relative to some orthonormal basis of \({\mathcal {H}}\). In this paper, we provide descriptions of concrete real operators, such as real normal operators, real partial isometries, and real Toeplitz operators, among others. Furthermore, we present several structure theorems of real operators, including the polar decomposition, the Riesz decomposition and the block structure.

论实数算子的结构
如果复可分离希尔伯特空间({\mathcal {H}})上的算子 T 可以表示为相对于 \({\mathcal {H}}\)的某个正交基的实矩阵,那么这个算子 T 就叫做实算子。在本文中,我们将对具体的实算子进行描述,如实正算子、实偏等距、实托普利兹算子等。此外,我们还提出了实算子的几个结构定理,包括极分解、Riesz分解和块结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.20
自引率
12.50%
发文量
107
审稿时长
3 months
期刊介绍: Complex Analysis and Operator Theory (CAOT) is devoted to the publication of current research developments in the closely related fields of complex analysis and operator theory as well as in applications to system theory, harmonic analysis, probability, statistics, learning theory, mathematical physics and other related fields. Articles using the theory of reproducing kernel spaces are in particular welcomed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信