Conditions Implying Self-adjointness and Normality of Operators

IF 0.7 4区 数学 Q2 MATHEMATICS
Hranislav Stanković
{"title":"Conditions Implying Self-adjointness and Normality of Operators","authors":"Hranislav Stanković","doi":"10.1007/s11785-024-01596-0","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we give new characterizations of self-adjoint and normal operators on a Hilbert space <span>\\(\\mathcal {H}\\)</span>. Among other results, we show that if <span>\\(\\mathcal {H}\\)</span> is a finite-dimensional Hilbert space and <span>\\(T\\in \\mathfrak {B}(\\mathcal {H})\\)</span>, then <i>T</i> is self-adjoint if and only if there exists <span>\\(p&gt;0\\)</span> such that <span>\\(|T|^p\\le |\\textrm{Re}\\,(T)|^p\\)</span>. If in addition, <i>T</i> and <span>\\(\\textrm{Re}\\,T\\)</span> are invertible, then <i>T</i> is self-adjoint if and only if <span>\\(\\log \\,|T|\\le \\log \\,|\\textrm{Re}\\,(T)|\\)</span>. Considering the polar decomposition <span>\\(T=U|T|\\)</span> of <span>\\(T\\in \\mathfrak {B}(\\mathcal {H})\\)</span>, we show that <i>T</i> is self-adjoint if and only if <i>T</i> is <i>p</i>-hyponormal (log-hyponormal) and <i>U</i> is self-adjoint. Also, if <span>\\(T=U|T|\\in \\mathfrak {B}({\\mathcal {H}})\\)</span> is a log-hyponormal operator and the spectrum of <i>U</i> is contained within the set of vertices of a regular polygon, then <i>T</i> is necessarily normal.</p>","PeriodicalId":50654,"journal":{"name":"Complex Analysis and Operator Theory","volume":"37 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Complex Analysis and Operator Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11785-024-01596-0","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we give new characterizations of self-adjoint and normal operators on a Hilbert space \(\mathcal {H}\). Among other results, we show that if \(\mathcal {H}\) is a finite-dimensional Hilbert space and \(T\in \mathfrak {B}(\mathcal {H})\), then T is self-adjoint if and only if there exists \(p>0\) such that \(|T|^p\le |\textrm{Re}\,(T)|^p\). If in addition, T and \(\textrm{Re}\,T\) are invertible, then T is self-adjoint if and only if \(\log \,|T|\le \log \,|\textrm{Re}\,(T)|\). Considering the polar decomposition \(T=U|T|\) of \(T\in \mathfrak {B}(\mathcal {H})\), we show that T is self-adjoint if and only if T is p-hyponormal (log-hyponormal) and U is self-adjoint. Also, if \(T=U|T|\in \mathfrak {B}({\mathcal {H}})\) is a log-hyponormal operator and the spectrum of U is contained within the set of vertices of a regular polygon, then T is necessarily normal.

意味着算子自相接和规范性的条件
在本文中,我们给出了希尔伯特空间 \(\mathcal {H}\)上的自相加算子和法算子的新特征。在其他结果中,我们证明了如果 \(\mathcal {H}\) 是一个有限维的希尔伯特空间,并且 \(T\in \mathfrak {B}(\mathcal {H})\),那么当且仅当存在 \(p>0\) 使得 \(|T|^p\le |\textrm{Re}\,(T)|^p\) 时,T 是自相交的。如果T和\(textrm{Re}\,T\)都是可逆的,那么只有当且仅当\(|\log \,|T|le\log \,|\textrm{Re}\,(T)|\)时,T才是自连接的。考虑到 \(T\in \mathfrak {B}(\mathcal {H})\) 的极分解 \(T=U|T||\),我们证明只有当 T 是 p-hyponormal (对数-hyponormal)且 U 是自相交时,T 才是自相交的。另外,如果 \(T=U|T|\in \mathfrak {B}({\mathcal {H}})\) 是对数正则算子,并且 U 的谱包含在正多边形的顶点集合中,那么 T 必然是正则的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.20
自引率
12.50%
发文量
107
审稿时长
3 months
期刊介绍: Complex Analysis and Operator Theory (CAOT) is devoted to the publication of current research developments in the closely related fields of complex analysis and operator theory as well as in applications to system theory, harmonic analysis, probability, statistics, learning theory, mathematical physics and other related fields. Articles using the theory of reproducing kernel spaces are in particular welcomed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信