M. Monajjemi, F. Mollaamin, S. Shahriari, Z. Khalaj, H. Sakhaeinia, A. Alihosseini
{"title":"Interaction of Nano-Boron Nitride Sheets with Electrodes in Lithium Ion Battery for Increasing Voltage and Amperage","authors":"M. Monajjemi, F. Mollaamin, S. Shahriari, Z. Khalaj, H. Sakhaeinia, A. Alihosseini","doi":"10.1134/S1990793124700465","DOIUrl":null,"url":null,"abstract":"<p>Nano<b>-</b>Boron nitride compounds have displayed a great potential as anode materials for lithium ion batteries (LIBs) due to their unique structural, mechanical, and electrical properties. The measured reversible lithium ion capacities of Graphene/(h-BN)<sub>2</sub>/Graphene(G/h-BN/G) based anodes are considerably improved compared to the conventional graphite-based anodes. In this study, the boron nitride sheet has been localized inside the graphene as an option to enhance the electrochemical ratio. Additionally, we have found the structure of G/h-BN/G can improve the capacity and electrical transport in C-BN sheets-based LIBs. Therefore, the modification of BN sheet and design of G/h-BN/G structure provide strategies for improving the performance of BN-G-based anodes. G/h-BN/G could also be assembled into free-standing electrodes without any binder or current collector, which will lead to increase specific energy density for the overall battery design. Finally, we fabricated a novel LIBs and tested our method and we found this system in similar condition using G/h-BN/G increases the voltage and amperage in LIBs. For increasing the capacity, voltage, and amperage for LIBs the composite materials play a strong role. Any theoretical studies in electrode materials (anode and cathode) of lithium ion batteries and subsequent experimental testing with the results of theory can help us to fabricate powerful batteries with low cost. Using Graphene/(h-BN)<sub>2</sub>/ Graphene(G/h-BN/G) based anodes with a suitable composite for cathode materials exhibit high voltages and amperages compared with similar conditions of the previous LIBs.</p>","PeriodicalId":768,"journal":{"name":"Russian Journal of Physical Chemistry B","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Journal of Physical Chemistry B","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1134/S1990793124700465","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, ATOMIC, MOLECULAR & CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Nano-Boron nitride compounds have displayed a great potential as anode materials for lithium ion batteries (LIBs) due to their unique structural, mechanical, and electrical properties. The measured reversible lithium ion capacities of Graphene/(h-BN)2/Graphene(G/h-BN/G) based anodes are considerably improved compared to the conventional graphite-based anodes. In this study, the boron nitride sheet has been localized inside the graphene as an option to enhance the electrochemical ratio. Additionally, we have found the structure of G/h-BN/G can improve the capacity and electrical transport in C-BN sheets-based LIBs. Therefore, the modification of BN sheet and design of G/h-BN/G structure provide strategies for improving the performance of BN-G-based anodes. G/h-BN/G could also be assembled into free-standing electrodes without any binder or current collector, which will lead to increase specific energy density for the overall battery design. Finally, we fabricated a novel LIBs and tested our method and we found this system in similar condition using G/h-BN/G increases the voltage and amperage in LIBs. For increasing the capacity, voltage, and amperage for LIBs the composite materials play a strong role. Any theoretical studies in electrode materials (anode and cathode) of lithium ion batteries and subsequent experimental testing with the results of theory can help us to fabricate powerful batteries with low cost. Using Graphene/(h-BN)2/ Graphene(G/h-BN/G) based anodes with a suitable composite for cathode materials exhibit high voltages and amperages compared with similar conditions of the previous LIBs.
期刊介绍:
Russian Journal of Physical Chemistry B: Focus on Physics is a journal that publishes studies in the following areas: elementary physical and chemical processes; structure of chemical compounds, reactivity, effect of external field and environment on chemical transformations; molecular dynamics and molecular organization; dynamics and kinetics of photoand radiation-induced processes; mechanism of chemical reactions in gas and condensed phases and at interfaces; chain and thermal processes of ignition, combustion and detonation in gases, two-phase and condensed systems; shock waves; new physical methods of examining chemical reactions; and biological processes in chemical physics.