Dipesh Kuinkel, Parichart Promchote, Khem R. Upreti, S.-Y. Simon Wang, Ngamindra Dahal, Binod Pokharel
{"title":"Projected changes in precipitation extremes in Southern Thailand using CMIP6 models","authors":"Dipesh Kuinkel, Parichart Promchote, Khem R. Upreti, S.-Y. Simon Wang, Ngamindra Dahal, Binod Pokharel","doi":"10.1007/s00704-024-05150-y","DOIUrl":null,"url":null,"abstract":"<p>Southern Thailand has experienced significant shifts in precipitation patterns in recent years, exerting substantial impacts on regional water resources and infrastructure systems. This study aims to elucidate these changes and underlying factors based on daily precipitation observations from Nakhon Si Thammarat Province spanning 1980 to 2022. Additionally, data from the Coupled Model Intercomparison Project Phase 6 (CMIP6) is utilized to investigate projected changes in precipitation for 2015–2100 relative to the historical period (1980–2014), employing a comprehensive analysis considering two emissions scenarios (SSP245 and SSP585) across six models. Various precipitation indices are selected to assess trends and statistical significance using the Mann-Kendall test. Both observed and climate model data indicate an increasing precipitation trend in Southern Thailand, with a reduced association with the El Niño-Southern Oscillation (ENSO) under warming conditions. Extreme precipitation indices also exhibit an increasing trend, with total precipitation and the 95th percentile of daily precipitation (R95p) revealing very wet conditions in recent years, projected to continue increasing. Contrastingly, the number of dry days is also mounting, suggesting that both dry and wet extremes will impact Southern Thailand under a warmer climate. The findings from this study provide an early indication of future precipitation and extreme event scenarios, which can inform the development of measures to mitigate climate change-related hazards in the region.</p>","PeriodicalId":22945,"journal":{"name":"Theoretical and Applied Climatology","volume":"14 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical and Applied Climatology","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s00704-024-05150-y","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Southern Thailand has experienced significant shifts in precipitation patterns in recent years, exerting substantial impacts on regional water resources and infrastructure systems. This study aims to elucidate these changes and underlying factors based on daily precipitation observations from Nakhon Si Thammarat Province spanning 1980 to 2022. Additionally, data from the Coupled Model Intercomparison Project Phase 6 (CMIP6) is utilized to investigate projected changes in precipitation for 2015–2100 relative to the historical period (1980–2014), employing a comprehensive analysis considering two emissions scenarios (SSP245 and SSP585) across six models. Various precipitation indices are selected to assess trends and statistical significance using the Mann-Kendall test. Both observed and climate model data indicate an increasing precipitation trend in Southern Thailand, with a reduced association with the El Niño-Southern Oscillation (ENSO) under warming conditions. Extreme precipitation indices also exhibit an increasing trend, with total precipitation and the 95th percentile of daily precipitation (R95p) revealing very wet conditions in recent years, projected to continue increasing. Contrastingly, the number of dry days is also mounting, suggesting that both dry and wet extremes will impact Southern Thailand under a warmer climate. The findings from this study provide an early indication of future precipitation and extreme event scenarios, which can inform the development of measures to mitigate climate change-related hazards in the region.
期刊介绍:
Theoretical and Applied Climatology covers the following topics:
- climate modeling, climatic changes and climate forecasting, micro- to mesoclimate, applied meteorology as in agro- and forestmeteorology, biometeorology, building meteorology and atmospheric radiation problems as they relate to the biosphere
- effects of anthropogenic and natural aerosols or gaseous trace constituents
- hardware and software elements of meteorological measurements, including techniques of remote sensing