Photoexcitation-Assisted Molecular Doping for High-Performance Polymeric Thermoelectric Materials

JACS Au Pub Date : 2024-08-15 DOI:10.1021/jacsau.4c00567
Zhen Ji, Zhiyi Li, Xiaojuan Dai, Lanyi Xiang, Yue Zhao, Dongyang Wang, Xiao Zhang, Liyao Liu, Zhiyuan Han, Lixin Niu, Yuqiu Di, Ye Zou, Chong-an Di, Daoben Zhu
{"title":"Photoexcitation-Assisted Molecular Doping for High-Performance Polymeric Thermoelectric Materials","authors":"Zhen Ji, Zhiyi Li, Xiaojuan Dai, Lanyi Xiang, Yue Zhao, Dongyang Wang, Xiao Zhang, Liyao Liu, Zhiyuan Han, Lixin Niu, Yuqiu Di, Ye Zou, Chong-an Di, Daoben Zhu","doi":"10.1021/jacsau.4c00567","DOIUrl":null,"url":null,"abstract":"Molecular doping plays a crucial role in modulating the performance of polymeric semiconductor (PSC) materials and devices. Despite the development of numerous molecular dopants and doping methods over the past few decades, achieving highly efficient doping of PSCs remains challenging, primarily because of the inadequate matching of frontier energy levels between the host polymers and the dopants, which is critical for facilitating charge transfer. In this work, we introduce a novel doping method termed photoexcitation-assisted molecular doping (PE-MD), capable of transcending limitations imposed by energy level disparities through the mediation of efficient photoinduced electron transfer between polymers and dopants. This approach significantly amplifies the electrical conductivity of the PDPP4T polymer, increasing it by more than 4 orders of magnitude to a maximum value of 349.67 S cm<sup>–1</sup>. Given that only the irradiated region experiences a substantial increase in doping level, the PE-MD process facilitates the photoresist-free and precise patterning of doped polymers at a resolution down to 1 μm. Furthermore, the enhanced electrical conductivity of the photoexcitation-assisted molecularly doped PDPP4T film promotes efficient thermoelectric conversion, yielding an impressive initial power factor of 226.1 μW m<sup>–1</sup> K<sup>–2</sup> and a figure-of-merit (<i>ZT</i>) of 0.18, accompanied by improved thermal and ambient stability. The PE-MD strategy not only remarkably elevates the doping level of PSCs toward efficient thermoelectric conversion but also preserves the easy processability of flexible and integrated devices.","PeriodicalId":14799,"journal":{"name":"JACS Au","volume":"78 1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JACS Au","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1021/jacsau.4c00567","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Molecular doping plays a crucial role in modulating the performance of polymeric semiconductor (PSC) materials and devices. Despite the development of numerous molecular dopants and doping methods over the past few decades, achieving highly efficient doping of PSCs remains challenging, primarily because of the inadequate matching of frontier energy levels between the host polymers and the dopants, which is critical for facilitating charge transfer. In this work, we introduce a novel doping method termed photoexcitation-assisted molecular doping (PE-MD), capable of transcending limitations imposed by energy level disparities through the mediation of efficient photoinduced electron transfer between polymers and dopants. This approach significantly amplifies the electrical conductivity of the PDPP4T polymer, increasing it by more than 4 orders of magnitude to a maximum value of 349.67 S cm–1. Given that only the irradiated region experiences a substantial increase in doping level, the PE-MD process facilitates the photoresist-free and precise patterning of doped polymers at a resolution down to 1 μm. Furthermore, the enhanced electrical conductivity of the photoexcitation-assisted molecularly doped PDPP4T film promotes efficient thermoelectric conversion, yielding an impressive initial power factor of 226.1 μW m–1 K–2 and a figure-of-merit (ZT) of 0.18, accompanied by improved thermal and ambient stability. The PE-MD strategy not only remarkably elevates the doping level of PSCs toward efficient thermoelectric conversion but also preserves the easy processability of flexible and integrated devices.

Abstract Image

光激发辅助分子掺杂实现高性能聚合物热电材料
分子掺杂在调节聚合物半导体(PSC)材料和器件的性能方面发挥着至关重要的作用。尽管在过去几十年中开发了许多分子掺杂剂和掺杂方法,但实现对 PSC 的高效掺杂仍然具有挑战性,这主要是因为宿主聚合物和掺杂剂之间的前沿能级匹配不足,而前沿能级是促进电荷转移的关键。在这项工作中,我们介绍了一种称为光激发辅助分子掺杂(PE-MD)的新型掺杂方法,它能够通过介导聚合物与掺杂剂之间高效的光诱导电子转移,超越能级差异所带来的限制。这种方法大大提高了 PDPP4T 聚合物的导电性,将其提高了 4 个数量级以上,最大值达到 349.67 S cm-1。鉴于只有辐照区域的掺杂水平会大幅提高,PE-MD 工艺有助于在分辨率低至 1 μm 的情况下对掺杂聚合物进行无光刻胶精确图案化。此外,光激发辅助分子掺杂 PDPP4T 薄膜的导电性增强,促进了高效热电转换,产生了令人印象深刻的 226.1 μW m-1 K-2 初始功率因数和 0.18 的功率因数(ZT),同时提高了热稳定性和环境稳定性。PE-MD 策略不仅显著提高了 PSCs 的掺杂水平,实现了高效热电转换,而且还保持了柔性集成器件的易加工性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信