{"title":"Analyzing the Influence of Mid-Layer Cracks on the Operational Performance of a Silicon-Substrate Bimorph Piezoelectric Energy Harvester","authors":"Asghar Jamshiddoust, Morteza Karamooz Mahdiabadi, Amin Farrokhabadi","doi":"10.1007/s40997-024-00800-y","DOIUrl":null,"url":null,"abstract":"<p>Cracks are common faults in micro-electromechanical structures that affect the performance and dynamic behavior of the structure. Cracks can change the structure’s stiffness, and parameters like resonance frequency, voltage and output power and could lead to the failure of that structure after a specific time. Hence, it is imperative to diagnose and detect structural cracks. In this study, we introduce a semi-analytical method to examine transverse cracks occurring within the mid-layer of a bimorph piezoelectric energy harvester. The investigation encompasses reductions in stiffness and variations in capacitance resulting from mid-layer transverse cracks. From a microscale perspective, we employ a stress transfer technique based on crack density to quantify stiffness reduction caused by mid-layer cracks. Analytical outcomes concerning the influence of cracks in the mid-layer of the bimorph are obtained using assumptions derived from the Euler–Bernoulli beam theory and substantiated through finite element analysis. The consequences of these imperfections on mechanical parameters such as resonance frequency, as well as electrical parameters like output electrical power, are deliberated upon. It is observed that the existence of cracks in the mid-layer of the bimorph piezoelectric energy harvester leads to a decline in its resonance frequency, accompanied by an increase in voltage and output power, indicative of impending device malfunction. This research facilitates the identification of defects in MEMS by monitoring the harvester's operational performance.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s40997-024-00800-y","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Cracks are common faults in micro-electromechanical structures that affect the performance and dynamic behavior of the structure. Cracks can change the structure’s stiffness, and parameters like resonance frequency, voltage and output power and could lead to the failure of that structure after a specific time. Hence, it is imperative to diagnose and detect structural cracks. In this study, we introduce a semi-analytical method to examine transverse cracks occurring within the mid-layer of a bimorph piezoelectric energy harvester. The investigation encompasses reductions in stiffness and variations in capacitance resulting from mid-layer transverse cracks. From a microscale perspective, we employ a stress transfer technique based on crack density to quantify stiffness reduction caused by mid-layer cracks. Analytical outcomes concerning the influence of cracks in the mid-layer of the bimorph are obtained using assumptions derived from the Euler–Bernoulli beam theory and substantiated through finite element analysis. The consequences of these imperfections on mechanical parameters such as resonance frequency, as well as electrical parameters like output electrical power, are deliberated upon. It is observed that the existence of cracks in the mid-layer of the bimorph piezoelectric energy harvester leads to a decline in its resonance frequency, accompanied by an increase in voltage and output power, indicative of impending device malfunction. This research facilitates the identification of defects in MEMS by monitoring the harvester's operational performance.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.