Decomposing force fields as flows on graphs reconstructed from stochastic trajectories

Ramón Nartallo-Kaluarachchi, Paul Expert, David Beers, Alexander Strang, Morten L. Kringelbach, Renaud Lambiotte, Alain Goriely
{"title":"Decomposing force fields as flows on graphs reconstructed from stochastic trajectories","authors":"Ramón Nartallo-Kaluarachchi, Paul Expert, David Beers, Alexander Strang, Morten L. Kringelbach, Renaud Lambiotte, Alain Goriely","doi":"arxiv-2409.07479","DOIUrl":null,"url":null,"abstract":"Disentangling irreversible and reversible forces from random fluctuations is\na challenging problem in the analysis of stochastic trajectories measured from\nreal-world dynamical systems. We present an approach to approximate the\ndynamics of a stationary Langevin process as a discrete-state Markov process\nevolving over a graph-representation of phase-space, reconstructed from\nstochastic trajectories. Next, we utilise the analogy of the Helmholtz-Hodge\ndecomposition of an edge-flow on a contractible simplicial complex with the\nassociated decomposition of a stochastic process into its irreversible and\nreversible parts. This allows us to decompose our reconstructed flow and to\ndifferentiate between the irreversible currents and reversible gradient flows\nunderlying the stochastic trajectories. We validate our approach on a range of\nsolvable and nonlinear systems and apply it to derive insight into the dynamics\nof flickering red-blood cells and healthy and arrhythmic heartbeats. In\nparticular, we capture the difference in irreversible circulating currents\nbetween healthy and passive cells and healthy and arrhythmic heartbeats. Our\nmethod breaks new ground at the interface of data-driven approaches to\nstochastic dynamics and graph signal processing, with the potential for further\napplications in the analysis of biological experiments and physiological\nrecordings. Finally, it prompts future analysis of the convergence of the\nHelmholtz-Hodge decomposition in discrete and continuous spaces.","PeriodicalId":501266,"journal":{"name":"arXiv - QuanBio - Quantitative Methods","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuanBio - Quantitative Methods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.07479","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Disentangling irreversible and reversible forces from random fluctuations is a challenging problem in the analysis of stochastic trajectories measured from real-world dynamical systems. We present an approach to approximate the dynamics of a stationary Langevin process as a discrete-state Markov process evolving over a graph-representation of phase-space, reconstructed from stochastic trajectories. Next, we utilise the analogy of the Helmholtz-Hodge decomposition of an edge-flow on a contractible simplicial complex with the associated decomposition of a stochastic process into its irreversible and reversible parts. This allows us to decompose our reconstructed flow and to differentiate between the irreversible currents and reversible gradient flows underlying the stochastic trajectories. We validate our approach on a range of solvable and nonlinear systems and apply it to derive insight into the dynamics of flickering red-blood cells and healthy and arrhythmic heartbeats. In particular, we capture the difference in irreversible circulating currents between healthy and passive cells and healthy and arrhythmic heartbeats. Our method breaks new ground at the interface of data-driven approaches to stochastic dynamics and graph signal processing, with the potential for further applications in the analysis of biological experiments and physiological recordings. Finally, it prompts future analysis of the convergence of the Helmholtz-Hodge decomposition in discrete and continuous spaces.
将力场分解为随机轨迹重构图上的流
将不可逆力和可逆力从随机波动中分离出来,是分析从真实世界动态系统测量的随机轨迹时面临的一个挑战性问题。我们提出了一种方法,通过随机轨迹重构,将静止朗文过程的动力学近似为离散状态马尔可夫过程在相空间的图表示上的演化。接下来,我们利用亥姆霍兹-霍德格德(Helmholtz-Hodged)分解可收缩单纯复合物上的边流与随机过程分解为不可逆和可逆部分的类比。这样,我们就能对重建的流进行分解,并区分随机轨迹下的不可逆流和可逆梯度流。我们在一系列可解和非线性系统上验证了我们的方法,并将其用于深入了解闪烁的红血细胞以及健康和心律失常的心跳动态。特别是,我们捕捉到了健康细胞与被动细胞、健康心跳与心律失常心跳之间不可逆循环电流的差异。我们的方法在数据驱动的随机动力学和图信号处理方法的界面上开辟了新天地,有望进一步应用于生物实验和生理记录的分析。最后,它促使我们在未来对离散和连续空间中的赫姆霍兹-霍奇分解的收敛性进行分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信