{"title":"Three Cases of Complex Eigenvalue/Vector Distributions of Symmetric Order-Three Random Tensors","authors":"Swastik Majumder, Naoki Sasakura","doi":"10.1093/ptep/ptae136","DOIUrl":null,"url":null,"abstract":"Random tensor models have applications in a variety of fields, such as quantum gravity, quantum information theory, mathematics of modern technologies, etc., and studying their statistical properties, e.g., tensor eigenvalue/vector distributions, are interesting and useful. Recently some tensor eigenvalue/vector distributions have been computed by expressing them as partition functions of zero-dimensional quantum field theories. In this paper, using the method, we compute three cases of complex eigenvalue/vector distributions of symmetric order-three random tensors, where the three cases can be characterized by the Lie-group invariances, $O(N,\\mathbb {R})$, $O(N,\\mathbb {C})$, and $U(N,\\mathbb {C})$, respectively. Exact closed-form expressions of the distributions are obtained by computing partition functions of four-fermi theories, where the last case is of the “signed” distribution which counts the distribution with a sign factor coming from a Hessian matrix. As an application, we compute the injective norm of the complex symmetric order-three random tensor in the large-N limit by computing the edge of the last signed distribution, obtaining agreement with a former numerical result in the literature.","PeriodicalId":20710,"journal":{"name":"Progress of Theoretical and Experimental Physics","volume":"32 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress of Theoretical and Experimental Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1093/ptep/ptae136","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0
Abstract
Random tensor models have applications in a variety of fields, such as quantum gravity, quantum information theory, mathematics of modern technologies, etc., and studying their statistical properties, e.g., tensor eigenvalue/vector distributions, are interesting and useful. Recently some tensor eigenvalue/vector distributions have been computed by expressing them as partition functions of zero-dimensional quantum field theories. In this paper, using the method, we compute three cases of complex eigenvalue/vector distributions of symmetric order-three random tensors, where the three cases can be characterized by the Lie-group invariances, $O(N,\mathbb {R})$, $O(N,\mathbb {C})$, and $U(N,\mathbb {C})$, respectively. Exact closed-form expressions of the distributions are obtained by computing partition functions of four-fermi theories, where the last case is of the “signed” distribution which counts the distribution with a sign factor coming from a Hessian matrix. As an application, we compute the injective norm of the complex symmetric order-three random tensor in the large-N limit by computing the edge of the last signed distribution, obtaining agreement with a former numerical result in the literature.
期刊介绍:
Progress of Theoretical and Experimental Physics (PTEP) is an international journal that publishes articles on theoretical and experimental physics. PTEP is a fully open access, online-only journal published by the Physical Society of Japan.
PTEP is the successor to Progress of Theoretical Physics (PTP), which terminated in December 2012 and merged into PTEP in January 2013.
PTP was founded in 1946 by Hideki Yukawa, the first Japanese Nobel Laureate. PTEP, the successor journal to PTP, has a broader scope than that of PTP covering both theoretical and experimental physics.
PTEP mainly covers areas including particles and fields, nuclear physics, astrophysics and cosmology, beam physics and instrumentation, and general and mathematical physics.