Three Cases of Complex Eigenvalue/Vector Distributions of Symmetric Order-Three Random Tensors

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Swastik Majumder, Naoki Sasakura
{"title":"Three Cases of Complex Eigenvalue/Vector Distributions of Symmetric Order-Three Random Tensors","authors":"Swastik Majumder, Naoki Sasakura","doi":"10.1093/ptep/ptae136","DOIUrl":null,"url":null,"abstract":"Random tensor models have applications in a variety of fields, such as quantum gravity, quantum information theory, mathematics of modern technologies, etc., and studying their statistical properties, e.g., tensor eigenvalue/vector distributions, are interesting and useful. Recently some tensor eigenvalue/vector distributions have been computed by expressing them as partition functions of zero-dimensional quantum field theories. In this paper, using the method, we compute three cases of complex eigenvalue/vector distributions of symmetric order-three random tensors, where the three cases can be characterized by the Lie-group invariances, $O(N,\\mathbb {R})$, $O(N,\\mathbb {C})$, and $U(N,\\mathbb {C})$, respectively. Exact closed-form expressions of the distributions are obtained by computing partition functions of four-fermi theories, where the last case is of the “signed” distribution which counts the distribution with a sign factor coming from a Hessian matrix. As an application, we compute the injective norm of the complex symmetric order-three random tensor in the large-N limit by computing the edge of the last signed distribution, obtaining agreement with a former numerical result in the literature.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1093/ptep/ptae136","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Random tensor models have applications in a variety of fields, such as quantum gravity, quantum information theory, mathematics of modern technologies, etc., and studying their statistical properties, e.g., tensor eigenvalue/vector distributions, are interesting and useful. Recently some tensor eigenvalue/vector distributions have been computed by expressing them as partition functions of zero-dimensional quantum field theories. In this paper, using the method, we compute three cases of complex eigenvalue/vector distributions of symmetric order-three random tensors, where the three cases can be characterized by the Lie-group invariances, $O(N,\mathbb {R})$, $O(N,\mathbb {C})$, and $U(N,\mathbb {C})$, respectively. Exact closed-form expressions of the distributions are obtained by computing partition functions of four-fermi theories, where the last case is of the “signed” distribution which counts the distribution with a sign factor coming from a Hessian matrix. As an application, we compute the injective norm of the complex symmetric order-three random tensor in the large-N limit by computing the edge of the last signed distribution, obtaining agreement with a former numerical result in the literature.
对称三阶随机张量的复特征值/矢量分布的三种情况
随机张量模型在量子引力、量子信息论、现代技术数学等多个领域都有应用,研究它们的统计特性,如张量特征值/矢量分布,既有趣又有用。最近,一些张量特征值/矢量分布被计算成零维量子场论的分割函数。本文利用该方法计算了对称三阶随机张量的复特征值/矢量分布的三种情况,这三种情况可以用李群不变量来表征,分别是$O(N,\mathbb {R})$、$O(N,\mathbb {C})$和$U(N,\mathbb {C})$。通过计算四铁米理论的分区函数,我们可以得到这些分布的精确闭式表达,其中最后一种情况是 "符号 "分布,即用来自赫森矩阵的符号因子来计算分布。作为应用,我们通过计算最后一种有符号分布的边缘,计算了复对称三阶随机张量在大 N 极限的注入规范,并与文献中的一个前数值结果达成了一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信