Tunable glassy dynamics in models of dense cellular tissue

Helen S. Ansell, Chengling Li, Daniel M. Sussman
{"title":"Tunable glassy dynamics in models of dense cellular tissue","authors":"Helen S. Ansell, Chengling Li, Daniel M. Sussman","doi":"arxiv-2409.00496","DOIUrl":null,"url":null,"abstract":"Observations of glassy dynamics in experiments on confluent cellular tissue\nhave inspired a wealth of computational and theoretical research to model their\nemergent collective behavior. Initial studies of the physical properties of\nseveral geometric cell models, including vertex-type models, have highlighted\nanomalous sub-Arrhenius, or \"ultra-strong,\" scaling of the dynamics with\ntemperature. Here we show that the dynamics and material properties of the 2d\nVoronoi model deviate even further from the standard glassforming paradigm. By\nvarying the characteristic shape index $p_0$, we demonstrate that the system\nproperties can be tuned between displaying expected glassforming behavior,\nincluding the breakdown of the Stokes-Einstein-Sutherland relation and the\nformation of dynamical heterogeneities, and an unusual regime in which the\nviscosity does not diverge as the characteristic relaxation time increase and\ndynamical heterogeneities are strongly suppressed. Our results provide further\ninsight into the fundamental properties of this class of anomalous glassy\nmaterials, and provide a step towards designing materials with predetermined\nglassy dynamics.","PeriodicalId":501040,"journal":{"name":"arXiv - PHYS - Biological Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Biological Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.00496","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Observations of glassy dynamics in experiments on confluent cellular tissue have inspired a wealth of computational and theoretical research to model their emergent collective behavior. Initial studies of the physical properties of several geometric cell models, including vertex-type models, have highlighted anomalous sub-Arrhenius, or "ultra-strong," scaling of the dynamics with temperature. Here we show that the dynamics and material properties of the 2d Voronoi model deviate even further from the standard glassforming paradigm. By varying the characteristic shape index $p_0$, we demonstrate that the system properties can be tuned between displaying expected glassforming behavior, including the breakdown of the Stokes-Einstein-Sutherland relation and the formation of dynamical heterogeneities, and an unusual regime in which the viscosity does not diverge as the characteristic relaxation time increase and dynamical heterogeneities are strongly suppressed. Our results provide further insight into the fundamental properties of this class of anomalous glassy materials, and provide a step towards designing materials with predetermined glassy dynamics.
致密细胞组织模型中的可调玻璃状动力学
在汇合细胞组织实验中观察到的玻璃态动力学激发了大量的计算和理论研究,以模拟其突变的集体行为。对包括顶点模型在内的各种几何细胞模型的物理性质进行的初步研究,突显了动态随温度变化的亚阿伦尼乌斯或 "超强 "缩放的反常现象。在这里,我们展示了 2dVoronoi 模型的动力学和材料特性与标准玻璃变形范式的进一步偏离。通过改变特征形状指数 $p_0$,我们证明可以在显示预期的玻璃化行为(包括斯托克斯-爱因斯坦-萨瑟兰关系的破坏和动力学异质性的形成)与粘度不会随着特征弛豫时间的增加而发散且动力学异质性被强烈抑制的不寻常体系之间调整系统属性。我们的研究结果进一步揭示了这类反常玻璃材料的基本特性,并为设计具有预定玻璃动力学特性的材料迈出了一步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信