Mahmoud Roushani, Hadi Hosseini, Kowsar Maleki, Farzaneh Mohammadi
{"title":"Hofmann-Type Coordination Polymer-Derived Nickel Phosphide Nanoplates for Electrocatalytic Oxidation and Determination of Insulin","authors":"Mahmoud Roushani, Hadi Hosseini, Kowsar Maleki, Farzaneh Mohammadi","doi":"10.1007/s12678-024-00888-5","DOIUrl":null,"url":null,"abstract":"<div><p>It is of key importance to design efficient insulin electrocatalysts based on nonprecious noble metal-free. However, the design of advanced nanostructured based metal phosphides is scarcely reported. In this work, for the first time, a novel insulin sensor based on Ni<sub>2</sub>P electrode materials with nanoplate structure was designed. In this regard, Hofmann-type coordination polymers (HCPs) based on Ni(H<sub>2</sub>O)<sub>2</sub>[Ni(CN)<sub>4</sub>]·H<sub>2</sub>O (Ni–Ni HCP) were prepared and used as precursors to the preparation of Ni<sub>2</sub>P. The unique layer structure of Ni–Ni HCP precursors can lead to the preparation of Ni<sub>2</sub>P nanoplates with large surface areas, high availability of active catalytic centers, and abundant interior space for fast diffusion and boosted reaction kinetics. The electrochemical results showed that the Ni<sub>2</sub>P nanoplates offer excellent capability toward insulin oxidation in 0.1 M NaOH electrolyte solution. Moreover, a proper linear relationship was obtained between insulin concentrations and the current responses in the range of 10 to 100 pM with the detection limit of 3 pM and with good capability for the determination of insulin in the human blood serum sample. This work offers a rational method for the structure engineering of Ni<sub>2</sub>P nanoplates using HCP precursors, which can lead to the fabrication of high-performance insulin sensor.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":535,"journal":{"name":"Electrocatalysis","volume":"15 6","pages":"448 - 455"},"PeriodicalIF":2.7000,"publicationDate":"2024-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electrocatalysis","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s12678-024-00888-5","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
It is of key importance to design efficient insulin electrocatalysts based on nonprecious noble metal-free. However, the design of advanced nanostructured based metal phosphides is scarcely reported. In this work, for the first time, a novel insulin sensor based on Ni2P electrode materials with nanoplate structure was designed. In this regard, Hofmann-type coordination polymers (HCPs) based on Ni(H2O)2[Ni(CN)4]·H2O (Ni–Ni HCP) were prepared and used as precursors to the preparation of Ni2P. The unique layer structure of Ni–Ni HCP precursors can lead to the preparation of Ni2P nanoplates with large surface areas, high availability of active catalytic centers, and abundant interior space for fast diffusion and boosted reaction kinetics. The electrochemical results showed that the Ni2P nanoplates offer excellent capability toward insulin oxidation in 0.1 M NaOH electrolyte solution. Moreover, a proper linear relationship was obtained between insulin concentrations and the current responses in the range of 10 to 100 pM with the detection limit of 3 pM and with good capability for the determination of insulin in the human blood serum sample. This work offers a rational method for the structure engineering of Ni2P nanoplates using HCP precursors, which can lead to the fabrication of high-performance insulin sensor.
期刊介绍:
Electrocatalysis is cross-disciplinary in nature, and attracts the interest of chemists, physicists, biochemists, surface and materials scientists, and engineers. Electrocatalysis provides the unique international forum solely dedicated to the exchange of novel ideas in electrocatalysis for academic, government, and industrial researchers. Quick publication of new results, concepts, and inventions made involving Electrocatalysis stimulates scientific discoveries and breakthroughs, promotes the scientific and engineering concepts that are critical to the development of novel electrochemical technologies.
Electrocatalysis publishes original submissions in the form of letters, research papers, review articles, book reviews, and educational papers. Letters are preliminary reports that communicate new and important findings. Regular research papers are complete reports of new results, and their analysis and discussion. Review articles critically and constructively examine development in areas of electrocatalysis that are of broad interest and importance. Educational papers discuss important concepts whose understanding is vital to advances in theoretical and experimental aspects of electrochemical reactions.