Counting Parabolic Principal G-Bundles with Nilpotent Sections Over $$\mathbb {P}^{1}$$

Pub Date : 2024-09-13 DOI:10.1007/s00031-024-09877-w
Rahul Singh
{"title":"Counting Parabolic Principal G-Bundles with Nilpotent Sections Over $$\\mathbb {P}^{1}$$","authors":"Rahul Singh","doi":"10.1007/s00031-024-09877-w","DOIUrl":null,"url":null,"abstract":"<p>Let <i>G</i> be a split connected reductive group over <span>\\(\\mathbb {F}_q\\)</span> and let <span>\\(\\mathbb {P}^1\\)</span> be the projective line over <span>\\(\\mathbb {F}_q\\)</span>. Firstly, we give an explicit formula for the number of <span>\\(\\mathbb {F}_{q}\\)</span>-rational points of generalized Steinberg varieties of <i>G</i>. Secondly, for each principal <i>G</i>-bundle over <span>\\(\\mathbb {P}^1\\)</span>, we give an explicit formula counting the number of triples consisting of parabolic structures at 0 and <span>\\(\\infty \\)</span> and a compatible nilpotent section of the associated adjoint bundle. In the case of <span>\\(GL_{n}\\)</span> we calculate a generating function of such volumes re-deriving a result of Mellit.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00031-024-09877-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Let G be a split connected reductive group over \(\mathbb {F}_q\) and let \(\mathbb {P}^1\) be the projective line over \(\mathbb {F}_q\). Firstly, we give an explicit formula for the number of \(\mathbb {F}_{q}\)-rational points of generalized Steinberg varieties of G. Secondly, for each principal G-bundle over \(\mathbb {P}^1\), we give an explicit formula counting the number of triples consisting of parabolic structures at 0 and \(\infty \) and a compatible nilpotent section of the associated adjoint bundle. In the case of \(GL_{n}\) we calculate a generating function of such volumes re-deriving a result of Mellit.

分享
查看原文
在 $$\mathbb {P}^{1}$ 上数抛物线主 G 束带的无热点部分
让 G 是一个在 \(\mathbb {F}_q\) 上的分裂连通还原群,让 \(\mathbb {P}^1\) 是在\(\mathbb {F}_q\) 上的投影线。首先,我们给出了 G 的广义 Steinberg varieties 的 \(\mathbb {F}_{q}\)-rational point 的数量的明确公式。其次,对于 \(\mathbb {P}^1\) 上的每个主 G 束,我们给出了一个明确的公式来计算由在 0 和 \(\infty \) 处的抛物线结构以及相关邻接束的相容零点截面组成的三元组的数量。在\(GL_{n}\)的情况下,我们计算了这样的卷的生成函数,重新得出了梅利特的一个结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信