{"title":"Regularity of Unipotent Elements in Total Positivity","authors":"Haiyu Chen, Kaitao Xie","doi":"10.1007/s00031-024-09871-2","DOIUrl":null,"url":null,"abstract":"<p>Let <i>G</i> be a connected reductive group split over <span>\\(\\mathbb R\\)</span>. We show that every unipotent element in the totally nonnegative monoid of <i>G</i> is regular in some Levi subgroups, confirming a conjecture of Lusztig.</p>","PeriodicalId":49423,"journal":{"name":"Transformation Groups","volume":"64 1","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transformation Groups","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00031-024-09871-2","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Let G be a connected reductive group split over \(\mathbb R\). We show that every unipotent element in the totally nonnegative monoid of G is regular in some Levi subgroups, confirming a conjecture of Lusztig.
期刊介绍:
Transformation Groups will only accept research articles containing new results, complete Proofs, and an abstract. Topics include: Lie groups and Lie algebras; Lie transformation groups and holomorphic transformation groups; Algebraic groups; Invariant theory; Geometry and topology of homogeneous spaces; Discrete subgroups of Lie groups; Quantum groups and enveloping algebras; Group aspects of conformal field theory; Kac-Moody groups and algebras; Lie supergroups and superalgebras.