Bon Park , Myung Eun Choi , Kyung Ju Ryu , Chaehwa Park , Minki Choi , Sang Eun Yoon , Won Seog Kim , Hyeon Ho Kim , Jung Yong Hong , Seok Jin Kim
{"title":"Exosomal miR-155-5p drives ibrutinib resistance in B-cell lymphoma","authors":"Bon Park , Myung Eun Choi , Kyung Ju Ryu , Chaehwa Park , Minki Choi , Sang Eun Yoon , Won Seog Kim , Hyeon Ho Kim , Jung Yong Hong , Seok Jin Kim","doi":"10.1016/j.yexcr.2024.114248","DOIUrl":null,"url":null,"abstract":"<div><p>Ibrutinib, a Bruton Tyrosine Kinase (BTK) inhibitor, has shown effectiveness against various B-cell lymphoid malignancies. However, prolonged usage can induce resistance, affecting treatment outcomes. The oncogenic microRNA, miR-155-5p, is associated with poor prognosis in B-cell lymphomas, prompting our investigation into the mechanism of acquired ibrutinib resistance in these cells. We generated ibrutinib-resistant OCI-Ly1 cells (OCI-Ly1-IbtR) through continuous exposure to 1 μM and 2 μM of ibrutinib. We conducted microRNA profiling of OCI-Ly1-IbtR and isolated exosomes via ultracentrifugation. Comparative studies of microRNA levels in cells and exosomes, as well as exploration of targets of up-regulated microRNAs in OCI-Ly1-IbtR, were performed. Target validation involved transfection of candidate microRNAs, and co-culture experiments utilized OCI-Ly1 cells with exosomes from OCI-Ly1-IbtR. Elevated levels of miR-155-5p were observed in OCI-Ly1-IbtR and its exosomes, correlating with AKT and NF-κB activation. Transfection of miR-155-5p induced AKT/NF-κB pathway activation in OCI-Ly1, resulting in ibrutinib resistance, enhanced colony formation, and sustained BTK activity. Primary cell lines from ibrutinib-refractory B-cell lymphoma patients exhibited similar signaling protein activation. Target evaluation identified KDM5B and DEPTOR as miR-155-5p targets, confirmed by downregulation after transfection. We observed KDM5B and DEPTOR enrichment in Ago2 during ibrutinib resistance and miR-155-5p transfection. Co-culture experiments demonstrated exosome-mediated transfer of miR-155-5p, inducing ibrutinib resistance and KDM5B/DEPTOR downregulation in OCI-Ly1. Our findings suggest that miR-155-5p overexpression is associated with AKT and NF-κB pathway activation in ibrutinib-resistant cells, proposing a potential role for acquired miR-155-5p upregulation in B-cell lymphoma ibrutinib resistance.</p></div>","PeriodicalId":12227,"journal":{"name":"Experimental cell research","volume":"442 2","pages":"Article 114248"},"PeriodicalIF":3.3000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental cell research","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0014482724003392","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Ibrutinib, a Bruton Tyrosine Kinase (BTK) inhibitor, has shown effectiveness against various B-cell lymphoid malignancies. However, prolonged usage can induce resistance, affecting treatment outcomes. The oncogenic microRNA, miR-155-5p, is associated with poor prognosis in B-cell lymphomas, prompting our investigation into the mechanism of acquired ibrutinib resistance in these cells. We generated ibrutinib-resistant OCI-Ly1 cells (OCI-Ly1-IbtR) through continuous exposure to 1 μM and 2 μM of ibrutinib. We conducted microRNA profiling of OCI-Ly1-IbtR and isolated exosomes via ultracentrifugation. Comparative studies of microRNA levels in cells and exosomes, as well as exploration of targets of up-regulated microRNAs in OCI-Ly1-IbtR, were performed. Target validation involved transfection of candidate microRNAs, and co-culture experiments utilized OCI-Ly1 cells with exosomes from OCI-Ly1-IbtR. Elevated levels of miR-155-5p were observed in OCI-Ly1-IbtR and its exosomes, correlating with AKT and NF-κB activation. Transfection of miR-155-5p induced AKT/NF-κB pathway activation in OCI-Ly1, resulting in ibrutinib resistance, enhanced colony formation, and sustained BTK activity. Primary cell lines from ibrutinib-refractory B-cell lymphoma patients exhibited similar signaling protein activation. Target evaluation identified KDM5B and DEPTOR as miR-155-5p targets, confirmed by downregulation after transfection. We observed KDM5B and DEPTOR enrichment in Ago2 during ibrutinib resistance and miR-155-5p transfection. Co-culture experiments demonstrated exosome-mediated transfer of miR-155-5p, inducing ibrutinib resistance and KDM5B/DEPTOR downregulation in OCI-Ly1. Our findings suggest that miR-155-5p overexpression is associated with AKT and NF-κB pathway activation in ibrutinib-resistant cells, proposing a potential role for acquired miR-155-5p upregulation in B-cell lymphoma ibrutinib resistance.
期刊介绍:
Our scope includes but is not limited to areas such as: Chromosome biology; Chromatin and epigenetics; DNA repair; Gene regulation; Nuclear import-export; RNA processing; Non-coding RNAs; Organelle biology; The cytoskeleton; Intracellular trafficking; Cell-cell and cell-matrix interactions; Cell motility and migration; Cell proliferation; Cellular differentiation; Signal transduction; Programmed cell death.