Anti-phase clustering of regulatory factors shapes gene bursting

Bitong Li, Yew Yan Wong, Neftali Flores-Rodriguez, Tara Davidson, Matthew S Graus, Valeriia Smialkovska, Hiroaki Ohishi, Angelika Feldmann, Hiroshi Ochiai, Mathias Francois
{"title":"Anti-phase clustering of regulatory factors shapes gene bursting","authors":"Bitong Li, Yew Yan Wong, Neftali Flores-Rodriguez, Tara Davidson, Matthew S Graus, Valeriia Smialkovska, Hiroaki Ohishi, Angelika Feldmann, Hiroshi Ochiai, Mathias Francois","doi":"10.1101/2024.09.10.612363","DOIUrl":null,"url":null,"abstract":"The ability of stem cells to divide and self-renew depends on a complex choreography of molecular events that maintain the transcriptional oscillation of pluripotency genes. Only a handful of transcription factors (TFs) are necessary to preserve pluripotency and reprogram differentiated cells into stem cells. Paradoxically, while the protein players are known, the challenge remains to decipher the series of steps that TFs undertake to modulate on and off fluctuations of gene transcription. Here, we use single-molecule tracking combined with the STREAMING-tag transcriptional reporter systems to reveal temporal clustering patterns of endogenous SOX2 occupancy at the Nanog locus in relation to its nascent mRNA synthesis in live embryonic stem cells. These patterns distinctively outline multifaceted regulatory behaviours of SOX2 associated with various stages of the Nanog transcription cycle. This study exposes that SOX2 clustering activity is out-of-phase with regulatory factors that engage with transcription burst at the Nanog gene locus.","PeriodicalId":501108,"journal":{"name":"bioRxiv - Molecular Biology","volume":"8 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv - Molecular Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.09.10.612363","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The ability of stem cells to divide and self-renew depends on a complex choreography of molecular events that maintain the transcriptional oscillation of pluripotency genes. Only a handful of transcription factors (TFs) are necessary to preserve pluripotency and reprogram differentiated cells into stem cells. Paradoxically, while the protein players are known, the challenge remains to decipher the series of steps that TFs undertake to modulate on and off fluctuations of gene transcription. Here, we use single-molecule tracking combined with the STREAMING-tag transcriptional reporter systems to reveal temporal clustering patterns of endogenous SOX2 occupancy at the Nanog locus in relation to its nascent mRNA synthesis in live embryonic stem cells. These patterns distinctively outline multifaceted regulatory behaviours of SOX2 associated with various stages of the Nanog transcription cycle. This study exposes that SOX2 clustering activity is out-of-phase with regulatory factors that engage with transcription burst at the Nanog gene locus.
调控因子的反相聚类形成基因突变
干细胞的分裂和自我更新能力取决于维持多能性基因转录振荡的分子事件的复杂编排。只有少数转录因子(TFs)是保持多能性和将分化细胞重编程为干细胞所必需的。令人费解的是,虽然蛋白质参与者已为人所知,但要破解转录因子调节基因转录波动的一系列步骤仍是一个挑战。在这里,我们利用单分子追踪技术结合STREAMING-tag转录报告系统,揭示了活胚胎干细胞中内源性SOX2在Nanog基因座占据的时间聚类模式与其新生mRNA合成的关系。这些模式清晰地勾勒出与 Nanog 转录周期不同阶段相关的 SOX2 的多方面调控行为。这项研究揭示了SOX2的聚类活动与Nanog基因位点转录爆发的调控因子不同步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信