Active grid turbulence anomalies through the lens of physics informed neural networks

Sofía Angriman, Sarah E. Smith, Patricio Clark di Leoni, Pablo J. Cobelli, Pablo D. Mininni, Martín Obligado
{"title":"Active grid turbulence anomalies through the lens of physics informed neural networks","authors":"Sofía Angriman, Sarah E. Smith, Patricio Clark di Leoni, Pablo J. Cobelli, Pablo D. Mininni, Martín Obligado","doi":"arxiv-2409.03919","DOIUrl":null,"url":null,"abstract":"Active grids operated with random protocols are a standard way to generate\nlarge Reynolds number turbulence in wind and water tunnels. But anomalies in\nthe decay and third-order scaling of active-grid turbulence have been reported.\nWe combine Laser Doppler Velocimetry and hot-wire anemometry measurements in a\nwind tunnel, with machine learning techniques and numerical simulations, to\ngain further understanding on the reasons behind these anomalies. Numerical\nsimulations that incorporate the statistical anomalies observed in the\nexperimental velocity field near the active grid can reproduce the experimental\nanomalies observed later in the decay. The results indicate that anomalies in\nexperiments near the active grid introduce correlations in the flow that\npersist for long times, and result in the flow being statistically different\nfrom homogeneous and isotropic turbulence.","PeriodicalId":501125,"journal":{"name":"arXiv - PHYS - Fluid Dynamics","volume":"3 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Fluid Dynamics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.03919","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Active grids operated with random protocols are a standard way to generate large Reynolds number turbulence in wind and water tunnels. But anomalies in the decay and third-order scaling of active-grid turbulence have been reported. We combine Laser Doppler Velocimetry and hot-wire anemometry measurements in a wind tunnel, with machine learning techniques and numerical simulations, to gain further understanding on the reasons behind these anomalies. Numerical simulations that incorporate the statistical anomalies observed in the experimental velocity field near the active grid can reproduce the experimental anomalies observed later in the decay. The results indicate that anomalies in experiments near the active grid introduce correlations in the flow that persist for long times, and result in the flow being statistically different from homogeneous and isotropic turbulence.
通过物理神经网络透视主动网格湍流异常现象
采用随机协议运行的主动网格是在风洞和水洞中产生大雷诺数湍流的标准方法。我们将风洞中的激光多普勒测速仪和热线测风速仪测量结果与机器学习技术和数值模拟相结合,以进一步了解这些异常现象背后的原因。数值模拟结合了在活动网格附近的实验速度场中观察到的统计异常,可以再现在衰减后期观察到的实验异常。结果表明,活动网格附近的实验异常在流动中引入了长期存在的相关性,并导致流动在统计上有别于均相和各向同性湍流。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信