Lattice Boltzmann Model for Transonic Flows

M. Atif, N. H. Maruthi, P. K. Kolluru, C. Thantanapally, S. Ansumali
{"title":"Lattice Boltzmann Model for Transonic Flows","authors":"M. Atif, N. H. Maruthi, P. K. Kolluru, C. Thantanapally, S. Ansumali","doi":"arxiv-2409.05114","DOIUrl":null,"url":null,"abstract":"The hydrodynamic limit of a discrete kinetic equation is intrinsically\nconnected with the symmetry of the lattices used in construction of a discrete\nvelocity model. On mixed lattices composed of standard lattices the sixth-order\n(and higher) moment is often not isotropic and thus they are insufficient to\nensure correct imposition of the hydrodynamic moments. This makes the task of\ndeveloping lattice Boltzmann model for transonic flows quite challenging. We\naddress this by decoupling the physical space lattice from the velocity space\nlattice to construct a lattice Boltzmann model with very high isotropy. The\nmodel is entirely on-lattice like the isothermal models, achieves a Mach number\nof two with only $81$ discrete velocities, and admits a simple generalization\nof equilibrium distribution used in isothermal equilibrium. We also present a\nnumber of realistic benchmark problems to show that the lattice Boltzmann model\nwith a limited number of velocities is not only feasible for transonic flow but\nis also quite simple and efficient like its subsonic counterpart.","PeriodicalId":501125,"journal":{"name":"arXiv - PHYS - Fluid Dynamics","volume":"7 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Fluid Dynamics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.05114","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The hydrodynamic limit of a discrete kinetic equation is intrinsically connected with the symmetry of the lattices used in construction of a discrete velocity model. On mixed lattices composed of standard lattices the sixth-order (and higher) moment is often not isotropic and thus they are insufficient to ensure correct imposition of the hydrodynamic moments. This makes the task of developing lattice Boltzmann model for transonic flows quite challenging. We address this by decoupling the physical space lattice from the velocity space lattice to construct a lattice Boltzmann model with very high isotropy. The model is entirely on-lattice like the isothermal models, achieves a Mach number of two with only $81$ discrete velocities, and admits a simple generalization of equilibrium distribution used in isothermal equilibrium. We also present a number of realistic benchmark problems to show that the lattice Boltzmann model with a limited number of velocities is not only feasible for transonic flow but is also quite simple and efficient like its subsonic counterpart.
跨音速流动的玻尔兹曼晶格模型
离散动力学方程的流体力学极限与用于构建离散速度模型的晶格的对称性有内在联系。在由标准晶格组成的混合晶格上,六阶(及更高阶)力矩通常不是各向同性的,因此它们不足以确保流体力学力矩的正确施加。这使得为跨声速流动建立玻尔兹曼晶格模型的任务变得相当具有挑战性。为了解决这个问题,我们将物理空间晶格与速度空间晶格解耦,构建了一个具有极高各向同性的玻尔兹曼晶格模型。该模型与等温模型一样完全在晶格上,只需 81 美元的离散速度就能达到 2 马赫数,并可对等温平衡中使用的平衡分布进行简单的概括。我们还提出了一些现实的基准问题,以表明具有有限速度数的晶格玻尔兹曼模型不仅对跨音速流动是可行的,而且与其亚音速对应模型一样相当简单和高效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信