A data-driven framework for enhancing coastal flood resilience in resource-crunched developing nations

Aishwarya Narendr, Bharath Haridas Aithal, Sutapa Das
{"title":"A data-driven framework for enhancing coastal flood resilience in resource-crunched developing nations","authors":"Aishwarya Narendr, Bharath Haridas Aithal, Sutapa Das","doi":"10.1080/19475705.2024.2396892","DOIUrl":null,"url":null,"abstract":"A comprehensive Flood Resilient Scenario Model ‘FReSMo’ employs a data-driven, evidence-based approach for assessing climate-induced flood risk and validating the efficacy of mangroves (as context-...","PeriodicalId":501356,"journal":{"name":"Geomatics, Natural Hazards and Risk","volume":"71 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geomatics, Natural Hazards and Risk","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/19475705.2024.2396892","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A comprehensive Flood Resilient Scenario Model ‘FReSMo’ employs a data-driven, evidence-based approach for assessing climate-induced flood risk and validating the efficacy of mangroves (as context-...
以数据为导向的框架,提高资源匮乏的发展中国家的沿海抗洪能力
抗洪综合情景模式 "FReSMo "采用了一种数据驱动、基于证据的方法来评估气候引起的洪水风险,并验证红树林的功效(红树林作为一种环境友好型植物)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信