Optimality Conditions and Numerical Algorithms for a Class of Linearly Constrained Minimax Optimization Problems

IF 2.6 1区 数学 Q1 MATHEMATICS, APPLIED
Yu-Hong Dai, Jiani Wang, Liwei Zhang
{"title":"Optimality Conditions and Numerical Algorithms for a Class of Linearly Constrained Minimax Optimization Problems","authors":"Yu-Hong Dai, Jiani Wang, Liwei Zhang","doi":"10.1137/22m1535243","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Optimization, Volume 34, Issue 3, Page 2883-2916, September 2024. <br/> Abstract. It is well known that there have been many numerical algorithms for solving nonsmooth minimax problems; however, numerical algorithms for nonsmooth minimax problems with joint linear constraints are very rare. This paper aims to discuss optimality conditions and develop practical numerical algorithms for minimax problems with joint linear constraints. First, we use the properties of proximal mapping and the KKT system to establish optimality conditions. Second, we propose a framework of an alternating coordinate algorithm for the minimax problem and analyze its convergence properties. Third, we develop a proximal gradient multistep ascent descent method (PGmsAD) as a numerical algorithm and demonstrate that the method can find an [math]-stationary point for this kind of nonsmooth problem in [math] iterations. Finally, we apply PGmsAD to generalized absolute value equations, generalized linear projection equations, and linear regression problems, and we report the efficiency of PGmsAD on large-scale optimization.","PeriodicalId":49529,"journal":{"name":"SIAM Journal on Optimization","volume":"104 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Optimization","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/22m1535243","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

SIAM Journal on Optimization, Volume 34, Issue 3, Page 2883-2916, September 2024.
Abstract. It is well known that there have been many numerical algorithms for solving nonsmooth minimax problems; however, numerical algorithms for nonsmooth minimax problems with joint linear constraints are very rare. This paper aims to discuss optimality conditions and develop practical numerical algorithms for minimax problems with joint linear constraints. First, we use the properties of proximal mapping and the KKT system to establish optimality conditions. Second, we propose a framework of an alternating coordinate algorithm for the minimax problem and analyze its convergence properties. Third, we develop a proximal gradient multistep ascent descent method (PGmsAD) as a numerical algorithm and demonstrate that the method can find an [math]-stationary point for this kind of nonsmooth problem in [math] iterations. Finally, we apply PGmsAD to generalized absolute value equations, generalized linear projection equations, and linear regression problems, and we report the efficiency of PGmsAD on large-scale optimization.
一类线性约束最小优化问题的最优条件和数值算法
SIAM 优化期刊》,第 34 卷第 3 期,第 2883-2916 页,2024 年 9 月。 摘要众所周知,已有许多求解非光滑最小问题的数值算法;然而,求解有联合线性约束的非光滑最小问题的数值算法却非常罕见。本文旨在讨论具有联合线性约束的最小问题的最优性条件并开发实用的数值算法。首先,我们利用近似映射和 KKT 系统的特性来建立最优性条件。其次,我们提出了最小问题的交替坐标算法框架,并分析了其收敛特性。第三,我们开发了一种近似梯度多步上升下降法(PGmsAD)作为数值算法,并证明该方法可以在[math]迭代中找到这类非光滑问题的[math]驻点。最后,我们将 PGmsAD 应用于广义绝对值方程、广义线性投影方程和线性回归问题,并报告了 PGmsAD 在大规模优化中的效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
SIAM Journal on Optimization
SIAM Journal on Optimization 数学-应用数学
CiteScore
5.30
自引率
9.70%
发文量
101
审稿时长
6-12 weeks
期刊介绍: The SIAM Journal on Optimization contains research articles on the theory and practice of optimization. The areas addressed include linear and quadratic programming, convex programming, nonlinear programming, complementarity problems, stochastic optimization, combinatorial optimization, integer programming, and convex, nonsmooth and variational analysis. Contributions may emphasize optimization theory, algorithms, software, computational practice, applications, or the links between these subjects.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信