Complexity of Integer Programming in Reverse Convex Sets via Boundary Hyperplane Cover

Robert Hildebrand, Adrian Göß
{"title":"Complexity of Integer Programming in Reverse Convex Sets via Boundary Hyperplane Cover","authors":"Robert Hildebrand, Adrian Göß","doi":"arxiv-2409.05308","DOIUrl":null,"url":null,"abstract":"We study the complexity of identifying the integer feasibility of reverse\nconvex sets. We present various settings where the complexity can be either\nNP-Hard or efficiently solvable when the dimension is fixed. Of particular\ninterest is the case of bounded reverse convex constraints with a polyhedral\ndomain. We introduce a structure, \\emph{Boundary Hyperplane Cover}, that\npermits this problem to be solved in polynomial time in fixed dimension\nprovided the number of nonlinear reverse convex sets is fixed.","PeriodicalId":501286,"journal":{"name":"arXiv - MATH - Optimization and Control","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Optimization and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.05308","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We study the complexity of identifying the integer feasibility of reverse convex sets. We present various settings where the complexity can be either NP-Hard or efficiently solvable when the dimension is fixed. Of particular interest is the case of bounded reverse convex constraints with a polyhedral domain. We introduce a structure, \emph{Boundary Hyperplane Cover}, that permits this problem to be solved in polynomial time in fixed dimension provided the number of nonlinear reverse convex sets is fixed.
通过边界超平面覆盖实现反凸集整数编程的复杂性
我们研究了识别反凸集整数可行性的复杂性。我们介绍了在维数固定的情况下,复杂度可以是 NP-Hard,也可以是高效求解的各种情况。我们特别感兴趣的是多面体域的有界反向凸约束。我们引入了一种结构,即有界超平面覆盖(\emph{Boundary Hyperplane Cover}),只要非线性反向凸集的数量固定,就能在固定维度下以多项式时间求解这个问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信