Frequency range non-Lipschitz parametric optimization of a noise absorption

Frederic MagoulesMICS, Mathieu MenouxMICS, Anna Rozanova-PierratMICS
{"title":"Frequency range non-Lipschitz parametric optimization of a noise absorption","authors":"Frederic MagoulesMICS, Mathieu MenouxMICS, Anna Rozanova-PierratMICS","doi":"arxiv-2409.06292","DOIUrl":null,"url":null,"abstract":"In the framework of the optimal wave energy absorption, we solve\ntheoretically and numerically a parametric shape optimization problem to find\nthe optimal distribution of absorbing material in the reflexive one defined by\na characteristic function in the Robin-type boundary condition associated with\nthe Helmholtz equation. Robin boundary condition can be given on a part or the\nall boundary of a bounded ($\\epsilon$, $\\infty$)-domain of R n . The geometry\nof the partially absorbing boundary is fixed, but allowed to be non-Lipschitz,\nfor example, fractal. It is defined as the support of a d-upper regular measure\nwith d $\\in$]n -2, n[. Using the well-posedness properties of the model, for\nany fixed volume fraction of the absorbing material, we establish the existence\nof at least one optimal distribution minimizing the acoustical energy on a\nfixed frequency range of the relaxation problem. Thanks to the shape derivative\nof the energy functional, also existing for non-Lipschitz boundaries, we\nimplement (in the two-dimensional case) the gradient descent method and find\nthe optimal distribution with 50% of the absorbent material on a frequency\nrange with better performances than the 100% absorbent boundary. The same type\nof performance is also obtained by the genetic method.","PeriodicalId":501286,"journal":{"name":"arXiv - MATH - Optimization and Control","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Optimization and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.06292","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In the framework of the optimal wave energy absorption, we solve theoretically and numerically a parametric shape optimization problem to find the optimal distribution of absorbing material in the reflexive one defined by a characteristic function in the Robin-type boundary condition associated with the Helmholtz equation. Robin boundary condition can be given on a part or the all boundary of a bounded ($\epsilon$, $\infty$)-domain of R n . The geometry of the partially absorbing boundary is fixed, but allowed to be non-Lipschitz, for example, fractal. It is defined as the support of a d-upper regular measure with d $\in$]n -2, n[. Using the well-posedness properties of the model, for any fixed volume fraction of the absorbing material, we establish the existence of at least one optimal distribution minimizing the acoustical energy on a fixed frequency range of the relaxation problem. Thanks to the shape derivative of the energy functional, also existing for non-Lipschitz boundaries, we implement (in the two-dimensional case) the gradient descent method and find the optimal distribution with 50% of the absorbent material on a frequency range with better performances than the 100% absorbent boundary. The same type of performance is also obtained by the genetic method.
噪声吸收的频率范围非 Lipschitz 参数优化
在最优波能吸收的框架下,我们从理论和数值上求解了一个参数形状优化问题,以找到吸收材料在与亥姆霍兹方程相关的罗宾型边界条件的特征函数所定义的反射一中的最优分布。罗宾边界条件可以在 R n 的有界($\epsilon$, $\infty$)域的部分或全部边界上给出。部分吸收边界的几何形状是固定的,但允许是非 Lipschitz 的,例如分形。它被定义为具有 d $\in$]n -2, n[ 的 d 上正则量的支持。利用该模型的好求解特性,对于任何固定体积分数的吸声材料,我们都能确定至少存在一种最优分布,能使松弛问题的固定频率范围内的声能最小化。由于能量函数的形状导数也存在于非 Lipschitz 边界,我们(在二维情况下)实施了梯度下降法,并在一个频率范围内找到了 50%吸声材料的最佳分布,其性能优于 100%吸声边界。遗传方法也获得了相同的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信