Bridging Autoencoders and Dynamic Mode Decomposition for Reduced-order Modeling and Control of PDEs

Priyabrata Saha, Saibal Mukhopadhyay
{"title":"Bridging Autoencoders and Dynamic Mode Decomposition for Reduced-order Modeling and Control of PDEs","authors":"Priyabrata Saha, Saibal Mukhopadhyay","doi":"arxiv-2409.06101","DOIUrl":null,"url":null,"abstract":"Modeling and controlling complex spatiotemporal dynamical systems driven by\npartial differential equations (PDEs) often necessitate dimensionality\nreduction techniques to construct lower-order models for computational\nefficiency. This paper explores a deep autoencoding learning method for\nreduced-order modeling and control of dynamical systems governed by\nspatiotemporal PDEs. We first analytically show that an optimization objective\nfor learning a linear autoencoding reduced-order model can be formulated to\nyield a solution closely resembling the result obtained through the dynamic\nmode decomposition with control algorithm. We then extend this linear\nautoencoding architecture to a deep autoencoding framework, enabling the\ndevelopment of a nonlinear reduced-order model. Furthermore, we leverage the\nlearned reduced-order model to design controllers using stability-constrained\ndeep neural networks. Numerical experiments are presented to validate the\nefficacy of our approach in both modeling and control using the example of a\nreaction-diffusion system.","PeriodicalId":501286,"journal":{"name":"arXiv - MATH - Optimization and Control","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Optimization and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.06101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Modeling and controlling complex spatiotemporal dynamical systems driven by partial differential equations (PDEs) often necessitate dimensionality reduction techniques to construct lower-order models for computational efficiency. This paper explores a deep autoencoding learning method for reduced-order modeling and control of dynamical systems governed by spatiotemporal PDEs. We first analytically show that an optimization objective for learning a linear autoencoding reduced-order model can be formulated to yield a solution closely resembling the result obtained through the dynamic mode decomposition with control algorithm. We then extend this linear autoencoding architecture to a deep autoencoding framework, enabling the development of a nonlinear reduced-order model. Furthermore, we leverage the learned reduced-order model to design controllers using stability-constrained deep neural networks. Numerical experiments are presented to validate the efficacy of our approach in both modeling and control using the example of a reaction-diffusion system.
衔接自动编码器和动态模式分解,实现 PDE 的降阶建模和控制
由偏微分方程(PDEs)驱动的复杂时空动力系统的建模与控制通常需要降维技术来构建低阶模型,以提高计算效率。本文探讨了一种深度自动编码学习方法,用于对由时空 PDEs 驱动的动态系统进行降维建模和控制。我们首先通过分析表明,学习线性自动编码降阶模型的优化目标可以通过动态模式分解与控制算法得到近似的解。然后,我们将这种线性自动编码架构扩展到深度自动编码框架,从而开发出非线性降阶模型。此外,我们还利用学习到的降阶模型,使用稳定性受限的深度神经网络设计控制器。通过数值实验,我们以反应扩散系统为例,验证了我们的方法在建模和控制方面的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信