KANtrol: A Physics-Informed Kolmogorov-Arnold Network Framework for Solving Multi-Dimensional and Fractional Optimal Control Problems

Alireza Afzal Aghaei
{"title":"KANtrol: A Physics-Informed Kolmogorov-Arnold Network Framework for Solving Multi-Dimensional and Fractional Optimal Control Problems","authors":"Alireza Afzal Aghaei","doi":"arxiv-2409.06649","DOIUrl":null,"url":null,"abstract":"In this paper, we introduce the KANtrol framework, which utilizes\nKolmogorov-Arnold Networks (KANs) to solve optimal control problems involving\ncontinuous time variables. We explain how Gaussian quadrature can be employed\nto approximate the integral parts within the problem, particularly for\nintegro-differential state equations. We also demonstrate how automatic\ndifferentiation is utilized to compute exact derivatives for integer-order\ndynamics, while for fractional derivatives of non-integer order, we employ\nmatrix-vector product discretization within the KAN framework. We tackle\nmulti-dimensional problems, including the optimal control of a 2D heat partial\ndifferential equation. The results of our simulations, which cover both forward\nand parameter identification problems, show that the KANtrol framework\noutperforms classical MLPs in terms of accuracy and efficiency.","PeriodicalId":501286,"journal":{"name":"arXiv - MATH - Optimization and Control","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Optimization and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.06649","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we introduce the KANtrol framework, which utilizes Kolmogorov-Arnold Networks (KANs) to solve optimal control problems involving continuous time variables. We explain how Gaussian quadrature can be employed to approximate the integral parts within the problem, particularly for integro-differential state equations. We also demonstrate how automatic differentiation is utilized to compute exact derivatives for integer-order dynamics, while for fractional derivatives of non-integer order, we employ matrix-vector product discretization within the KAN framework. We tackle multi-dimensional problems, including the optimal control of a 2D heat partial differential equation. The results of our simulations, which cover both forward and parameter identification problems, show that the KANtrol framework outperforms classical MLPs in terms of accuracy and efficiency.
KANtrol:用于解决多维和分数最优控制问题的物理信息型科尔莫戈罗夫-阿诺德网络框架
本文介绍了 KANtrol 框架,该框架利用 Kolmogorov-Arnold 网络(KAN)来解决涉及连续时间变量的最优控制问题。我们解释了如何利用高斯正交来逼近问题中的积分部分,特别是对于积分微分状态方程。我们还演示了如何利用自动微分来计算整数阶动力学的精确导数,而对于非整数阶的分数导数,我们则在 KAN 框架内采用矩阵向量积离散化。我们解决了多维问题,包括二维热偏微分方程的优化控制。模拟结果表明,KAN 控制框架在精度和效率方面都优于经典 MLP。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信