Flexible block-iterative analysis for the Frank-Wolfe algorithm

Gábor Braun, Sebastian Pokutta, Zev Woodstock
{"title":"Flexible block-iterative analysis for the Frank-Wolfe algorithm","authors":"Gábor Braun, Sebastian Pokutta, Zev Woodstock","doi":"arxiv-2409.06931","DOIUrl":null,"url":null,"abstract":"We prove that the block-coordinate Frank-Wolfe (BCFW) algorithm converges\nwith state-of-the-art rates in both convex and nonconvex settings under a very\nmild \"block-iterative\" assumption, newly allowing for (I) progress without\nactivating the most-expensive linear minimization oracle(s), LMO(s), at every\niteration, (II) parallelized updates that do not require all LMOs, and\ntherefore (III) deterministic parallel update strategies that take into account\nthe numerical cost of the problem's LMOs. Our results apply for short-step BCFW\nas well as an adaptive method for convex functions. New relationships between\nupdated coordinates and primal progress are proven, and a favorable speedup is\ndemonstrated using FrankWolfe.jl.","PeriodicalId":501286,"journal":{"name":"arXiv - MATH - Optimization and Control","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Optimization and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.06931","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We prove that the block-coordinate Frank-Wolfe (BCFW) algorithm converges with state-of-the-art rates in both convex and nonconvex settings under a very mild "block-iterative" assumption, newly allowing for (I) progress without activating the most-expensive linear minimization oracle(s), LMO(s), at every iteration, (II) parallelized updates that do not require all LMOs, and therefore (III) deterministic parallel update strategies that take into account the numerical cost of the problem's LMOs. Our results apply for short-step BCFW as well as an adaptive method for convex functions. New relationships between updated coordinates and primal progress are proven, and a favorable speedup is demonstrated using FrankWolfe.jl.
弗兰克-沃尔夫算法的灵活分块迭代分析
我们证明,在非常温和的 "分块迭代 "假设下,块坐标弗兰克-沃尔夫(BCFW)算法在凸函数和非凸函数环境中都能以最先进的速度收敛,这种新方法允许(I)在每次迭代时都不激活最昂贵的线性最小化神谕(LMO),(II)不需要所有 LMO 的并行更新,以及(III)考虑问题的 LMO 数值成本的确定性并行更新策略。我们的结果适用于短步 BCFW 以及凸函数的自适应方法。证明了更新坐标与基元进度之间的新关系,并使用 FrankWolfe.jl 演示了良好的加速效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信