An observability estimate for the wave equation and applications to the Neumann boundary controllability for semi-linear wave equations

Sue Claret
{"title":"An observability estimate for the wave equation and applications to the Neumann boundary controllability for semi-linear wave equations","authors":"Sue Claret","doi":"arxiv-2409.07214","DOIUrl":null,"url":null,"abstract":"We give a boundary observability result for a $1$d wave equation with a\npotential. We then deduce with a Schauder fixed-point argument the existence of\na Neumann boundary control for a semi-linear wave equation $\\partial_{tt}y -\n\\partial_{xx}y + f(y) = 0$ under an optimal growth assumption at infinity on\n$f$ of the type $s\\ln^2s$. Moreover, assuming additional assumption on $f'$, we\nconstruct a minimizing sequence which converges to a control. Numerical\nexperiments illustrate the results. This work extends to the Neumann boundary\ncontrol case the work of Zuazua in $1993$ and the work of M\\\"unch and Tr\\'elat\nin $2022$.","PeriodicalId":501286,"journal":{"name":"arXiv - MATH - Optimization and Control","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Optimization and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.07214","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We give a boundary observability result for a $1$d wave equation with a potential. We then deduce with a Schauder fixed-point argument the existence of a Neumann boundary control for a semi-linear wave equation $\partial_{tt}y - \partial_{xx}y + f(y) = 0$ under an optimal growth assumption at infinity on $f$ of the type $s\ln^2s$. Moreover, assuming additional assumption on $f'$, we construct a minimizing sequence which converges to a control. Numerical experiments illustrate the results. This work extends to the Neumann boundary control case the work of Zuazua in $1993$ and the work of M\"unch and Tr\'elat in $2022$.
波方程的可观测性估计及其在半线性波方程的诺伊曼边界可控性中的应用
我们给出了一个具有等势的 1 美元 d 波方程的边界可观测性结果。然后,我们用一个绍德定点论证推导出了一个半线性波方程$\partial_{tt}y -\partial_{xx}y + f(y) = 0$的诺伊曼边界控制的存在性,其条件是在$s\ln^2s$类型的$f$无穷远处的最优增长假设。此外,假设对 $f'$ 有额外的假设,我们构建了一个收敛于控制的最小化序列。数值实验说明了这些结果。这项工作将1993年Zuazua的工作以及2022年M\"unch和Tr\'elatin的工作扩展到了诺伊曼边界控制情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信