Optimal Consumption for Recursive Preferences with Local Substitution under Risk

Hanwu Li, Frank Riedel
{"title":"Optimal Consumption for Recursive Preferences with Local Substitution under Risk","authors":"Hanwu Li, Frank Riedel","doi":"arxiv-2409.07799","DOIUrl":null,"url":null,"abstract":"We explore intertemporal preferences that are recursive and account for local\nintertemporal substitution. First, we establish a rigorous foundation for these\npreferences and analyze their properties. Next, we examine the associated\noptimal consumption problem, proving the existence and uniqueness of the\noptimal consumption plan. We present an infinite-dimensional version of the\nKuhn-Tucker theorem, which provides the necessary and sufficient conditions for\noptimality. Additionally, we investigate quantitative properties and the\nconstruction of the optimal consumption plan. Finally, we offer a detailed\ndescription of the structure of optimal consumption within a geometric Poisson\nframework.","PeriodicalId":501286,"journal":{"name":"arXiv - MATH - Optimization and Control","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Optimization and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.07799","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We explore intertemporal preferences that are recursive and account for local intertemporal substitution. First, we establish a rigorous foundation for these preferences and analyze their properties. Next, we examine the associated optimal consumption problem, proving the existence and uniqueness of the optimal consumption plan. We present an infinite-dimensional version of the Kuhn-Tucker theorem, which provides the necessary and sufficient conditions for optimality. Additionally, we investigate quantitative properties and the construction of the optimal consumption plan. Finally, we offer a detailed description of the structure of optimal consumption within a geometric Poisson framework.
风险条件下具有局部替代性的递归偏好的最优消费
我们探讨了具有递归性并考虑局部跨期替代的跨期偏好。首先,我们为这些偏好建立了严格的基础,并分析了它们的特性。接着,我们研究了相关的最优消费问题,证明了最优消费计划的存在性和唯一性。我们提出了库恩-塔克(Kuhn-Tucker)定理的无穷维版本,该定理提供了最优的必要条件和充分条件。此外,我们还研究了最优消费计划的定量属性和构造。最后,我们详细描述了几何泊松框架下的最优消费结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信