{"title":"Dual-Sparse Parallel Nested Array for Two-Dimensional Direction of Arrival Estimation","authors":"Guojun Jiang, Jiacheng Huang, Yunlong Yang","doi":"10.1007/s00034-024-02816-w","DOIUrl":null,"url":null,"abstract":"<p>In this paper, a novel dual-sparse parallel nested array (DS-PNA) is proposed for high-accuracy two-dimensional (2D) direction of arrival (DOA) estimation. The DS-PNA contains three subarrays, and the inter-antenna spacings of subarrays and those between subarrays are all enlarged with specific rates in 2D space (both of which are far larger than half-wavelength), for mutual coupling reduction and array aperture extension in physical array domain. Based on it, there is a systematic procedure to determine the number and positions of antennas in each subarray to achieve the maximum degrees of freedom in difference coarray domain, for improving the performance of DOA estimation. Numerical results are provided to demonstrate the superior performance of the DS-PNA for 2D DOA estimation over the state-of-the-art approaches, in the case of practical mutual coupling model.</p>","PeriodicalId":10227,"journal":{"name":"Circuits, Systems and Signal Processing","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Circuits, Systems and Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s00034-024-02816-w","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, a novel dual-sparse parallel nested array (DS-PNA) is proposed for high-accuracy two-dimensional (2D) direction of arrival (DOA) estimation. The DS-PNA contains three subarrays, and the inter-antenna spacings of subarrays and those between subarrays are all enlarged with specific rates in 2D space (both of which are far larger than half-wavelength), for mutual coupling reduction and array aperture extension in physical array domain. Based on it, there is a systematic procedure to determine the number and positions of antennas in each subarray to achieve the maximum degrees of freedom in difference coarray domain, for improving the performance of DOA estimation. Numerical results are provided to demonstrate the superior performance of the DS-PNA for 2D DOA estimation over the state-of-the-art approaches, in the case of practical mutual coupling model.
本文提出了一种用于高精度二维(2D)到达方向(DOA)估计的新型双稀疏并行嵌套阵列(DS-PNA)。DS-PNA 包含三个子阵列,子阵列的天线间距和子阵列之间的天线间距都在二维空间中以特定速率放大(均远大于半波长),以减少相互耦合,并在物理阵列域中扩展阵列孔径。在此基础上,有一套系统的程序来确定每个子阵列中天线的数量和位置,以实现差分共阵列域的最大自由度,从而提高 DOA 估计的性能。数值结果表明,在实际相互耦合模型情况下,DS-PNA 的二维 DOA 估计性能优于最先进的方法。
期刊介绍:
Rapid developments in the analog and digital processing of signals for communication, control, and computer systems have made the theory of electrical circuits and signal processing a burgeoning area of research and design. The aim of Circuits, Systems, and Signal Processing (CSSP) is to help meet the needs of outlets for significant research papers and state-of-the-art review articles in the area.
The scope of the journal is broad, ranging from mathematical foundations to practical engineering design. It encompasses, but is not limited to, such topics as linear and nonlinear networks, distributed circuits and systems, multi-dimensional signals and systems, analog filters and signal processing, digital filters and signal processing, statistical signal processing, multimedia, computer aided design, graph theory, neural systems, communication circuits and systems, and VLSI signal processing.
The Editorial Board is international, and papers are welcome from throughout the world. The journal is devoted primarily to research papers, but survey, expository, and tutorial papers are also published.
Circuits, Systems, and Signal Processing (CSSP) is published twelve times annually.