Numerical study of a general criterion for divertor detachment control

IF 3.5 1区 物理与天体物理 Q1 PHYSICS, FLUIDS & PLASMAS
Hao Yang, Guido Ciraolo, Olivier Février, Nicolas Fedorczak, Nicolas Rivals, Andreas Bierwage, Hugo Bufferand, Gloria L Falchetto, Tomohide Nakano, Patrick Tamain, Jérôme Bucalossi, the WEST teama
{"title":"Numerical study of a general criterion for divertor detachment control","authors":"Hao Yang, Guido Ciraolo, Olivier Février, Nicolas Fedorczak, Nicolas Rivals, Andreas Bierwage, Hugo Bufferand, Gloria L Falchetto, Tomohide Nakano, Patrick Tamain, Jérôme Bucalossi, the WEST teama","doi":"10.1088/1741-4326/ad6e07","DOIUrl":null,"url":null,"abstract":"The parameter <inline-formula>\n<tex-math><?CDATA $R_\\mathrm{D} = P_\\mathrm{rad}/P_\\mathrm{cond}$?></tex-math><mml:math overflow=\"scroll\"><mml:mrow><mml:msub><mml:mi>R</mml:mi><mml:mrow><mml:mi mathvariant=\"normal\">D</mml:mi></mml:mrow></mml:msub><mml:mo>=</mml:mo><mml:msub><mml:mi>P</mml:mi><mml:mrow><mml:mi>rad</mml:mi></mml:mrow></mml:msub><mml:mrow><mml:mo>/</mml:mo></mml:mrow><mml:msub><mml:mi>P</mml:mi><mml:mrow><mml:mi>cond</mml:mi></mml:mrow></mml:msub></mml:mrow></mml:math><inline-graphic xlink:href=\"nfad6e07ieqn1.gif\"></inline-graphic></inline-formula>, which measures the ratio of radiated power to conductive heat flux at downstream <italic toggle=\"yes\">Scrape-Off-Layer</italic> (SOL), is proposed as a robust and practically useful figure of merit for divertor detachment control. The simulations performed using the SOLEDGE3X-EIRENE code predict that the instant where <inline-formula>\n<tex-math><?CDATA $R_\\mathrm{D}$?></tex-math><mml:math overflow=\"scroll\"><mml:mrow><mml:msub><mml:mi>R</mml:mi><mml:mrow><mml:mi mathvariant=\"normal\">D</mml:mi></mml:mrow></mml:msub></mml:mrow></mml:math><inline-graphic xlink:href=\"nfad6e07ieqn2.gif\"></inline-graphic></inline-formula> passes through unity (that is, when <inline-formula>\n<tex-math><?CDATA $P_\\mathrm{rad} \\approx P_\\mathrm{cond}$?></tex-math><mml:math overflow=\"scroll\"><mml:mrow><mml:msub><mml:mi>P</mml:mi><mml:mrow><mml:mi>rad</mml:mi></mml:mrow></mml:msub><mml:mo>≈</mml:mo><mml:msub><mml:mi>P</mml:mi><mml:mrow><mml:mi>cond</mml:mi></mml:mrow></mml:msub></mml:mrow></mml:math><inline-graphic xlink:href=\"nfad6e07ieqn3.gif\"></inline-graphic></inline-formula>) coincides with the detachment of the radiation front from the divertor target. Furthermore, as a function of <inline-formula>\n<tex-math><?CDATA $R_\\mathrm{D}$?></tex-math><mml:math overflow=\"scroll\"><mml:mrow><mml:msub><mml:mi>R</mml:mi><mml:mrow><mml:mi mathvariant=\"normal\">D</mml:mi></mml:mrow></mml:msub></mml:mrow></mml:math><inline-graphic xlink:href=\"nfad6e07ieqn4.gif\"></inline-graphic></inline-formula>, there is a decrease in target temperature and an increase in the distance at which the radiation front detaches from the target. These simulations cover scenarios in WEST and TCV with different levels of confinement, divertor closure, impurity concentration, and input power. The physical rationale underlying the above definition of <inline-formula>\n<tex-math><?CDATA $R_\\mathrm{D}$?></tex-math><mml:math overflow=\"scroll\"><mml:mrow><mml:msub><mml:mi>R</mml:mi><mml:mrow><mml:mi mathvariant=\"normal\">D</mml:mi></mml:mrow></mml:msub></mml:mrow></mml:math><inline-graphic xlink:href=\"nfad6e07ieqn5.gif\"></inline-graphic></inline-formula> is that when the divertor radiated power is comparable to the conductive heat flux, there will be a lack of energy reaching the target. Consequently, the radiation front detaches some distance from the divertor target. <inline-formula>\n<tex-math><?CDATA $R_\\mathrm{D}$?></tex-math><mml:math overflow=\"scroll\"><mml:mrow><mml:msub><mml:mi>R</mml:mi><mml:mrow><mml:mi mathvariant=\"normal\">D</mml:mi></mml:mrow></mml:msub></mml:mrow></mml:math><inline-graphic xlink:href=\"nfad6e07ieqn6.gif\"></inline-graphic></inline-formula> can thus be a good indicator for transitions to and from the detachment state. By monitoring <inline-formula>\n<tex-math><?CDATA $R_\\mathrm{D}$?></tex-math><mml:math overflow=\"scroll\"><mml:mrow><mml:msub><mml:mi>R</mml:mi><mml:mrow><mml:mi mathvariant=\"normal\">D</mml:mi></mml:mrow></mml:msub></mml:mrow></mml:math><inline-graphic xlink:href=\"nfad6e07ieqn7.gif\"></inline-graphic></inline-formula>, it becomes easier to maintain the heat flux deposition at the target at a manageable level. The evaluation of <inline-formula>\n<tex-math><?CDATA $R_\\mathrm{D}$?></tex-math><mml:math overflow=\"scroll\"><mml:mrow><mml:msub><mml:mi>R</mml:mi><mml:mrow><mml:mi mathvariant=\"normal\">D</mml:mi></mml:mrow></mml:msub></mml:mrow></mml:math><inline-graphic xlink:href=\"nfad6e07ieqn8.gif\"></inline-graphic></inline-formula> requires diagnostic measurement of downstream SOL radiation and upstream temperature which is feasible in tokamak devices. The robustness of this figure of merit is evaluated through realistic time-dependent numerical simulations for the WEST tokamak, as well as experimental data from WEST, TCV, and JT-60U cases. The results show that <inline-formula>\n<tex-math><?CDATA $R_\\mathrm{D}$?></tex-math><mml:math overflow=\"scroll\"><mml:mrow><mml:msub><mml:mi>R</mml:mi><mml:mrow><mml:mi mathvariant=\"normal\">D</mml:mi></mml:mrow></mml:msub></mml:mrow></mml:math><inline-graphic xlink:href=\"nfad6e07ieqn9.gif\"></inline-graphic></inline-formula> is capable of capturing the evolution of divertor plasma states, despite the different discharges and machines, suggesting that <inline-formula>\n<tex-math><?CDATA $R_\\mathrm{D}$?></tex-math><mml:math overflow=\"scroll\"><mml:mrow><mml:msub><mml:mi>R</mml:mi><mml:mrow><mml:mi mathvariant=\"normal\">D</mml:mi></mml:mrow></mml:msub></mml:mrow></mml:math><inline-graphic xlink:href=\"nfad6e07ieqn10.gif\"></inline-graphic></inline-formula> can serve as a valuable control variable for real-time experimental divertor detachment control.","PeriodicalId":19379,"journal":{"name":"Nuclear Fusion","volume":"63 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear Fusion","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1741-4326/ad6e07","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, FLUIDS & PLASMAS","Score":null,"Total":0}
引用次数: 0

Abstract

The parameter RD=Prad/Pcond, which measures the ratio of radiated power to conductive heat flux at downstream Scrape-Off-Layer (SOL), is proposed as a robust and practically useful figure of merit for divertor detachment control. The simulations performed using the SOLEDGE3X-EIRENE code predict that the instant where RD passes through unity (that is, when PradPcond) coincides with the detachment of the radiation front from the divertor target. Furthermore, as a function of RD, there is a decrease in target temperature and an increase in the distance at which the radiation front detaches from the target. These simulations cover scenarios in WEST and TCV with different levels of confinement, divertor closure, impurity concentration, and input power. The physical rationale underlying the above definition of RD is that when the divertor radiated power is comparable to the conductive heat flux, there will be a lack of energy reaching the target. Consequently, the radiation front detaches some distance from the divertor target. RD can thus be a good indicator for transitions to and from the detachment state. By monitoring RD, it becomes easier to maintain the heat flux deposition at the target at a manageable level. The evaluation of RD requires diagnostic measurement of downstream SOL radiation and upstream temperature which is feasible in tokamak devices. The robustness of this figure of merit is evaluated through realistic time-dependent numerical simulations for the WEST tokamak, as well as experimental data from WEST, TCV, and JT-60U cases. The results show that RD is capable of capturing the evolution of divertor plasma states, despite the different discharges and machines, suggesting that RD can serve as a valuable control variable for real-time experimental divertor detachment control.
分流器脱离控制一般标准的数值研究
参数 RD=Prad/Pcond 用于测量下游刮掉层 (SOL) 的辐射功率与传导热通量之比,是用于控制分流器脱落的一个稳健且实用的优点参数。使用 SOLEDGE3X-EIRENE 代码进行的模拟预测,RD 通过统一值的瞬间(即 Prad≈Pcond 时)与辐射前沿脱离分流器目标的时间相吻合。此外,作为 RD 的函数,目标温度降低,辐射锋脱离目标的距离增加。这些模拟涵盖了 WEST 和 TCV 中不同约束水平、分流器封闭程度、杂质浓度和输入功率的情况。上述 RD 定义的物理原理是,当分流器的辐射功率与传导热通量相当时,到达目标的能量将不足。因此,辐射前沿会与转移目标分离一段距离。因此,RD 可以很好地指示脱离状态的转换。通过监测 RD,可以更容易地将目标处的热通量沉积保持在可控水平。评估 RD 需要对下游 SOL 辐射和上游温度进行诊断性测量,这在托卡马克装置中是可行的。通过对 WEST 托卡马克进行现实的随时间变化的数值模拟,以及 WEST、TCV 和 JT-60U 的实验数据,对这一优点的稳健性进行了评估。结果表明,尽管放电和机器不同,但 RD 能够捕捉憩室等离子体状态的演变,这表明 RD 可以作为实时实验憩室脱离控制的重要控制变量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nuclear Fusion
Nuclear Fusion 物理-物理:核物理
CiteScore
6.30
自引率
39.40%
发文量
411
审稿时长
2.6 months
期刊介绍: Nuclear Fusion publishes articles making significant advances to the field of controlled thermonuclear fusion. The journal scope includes: -the production, heating and confinement of high temperature plasmas; -the physical properties of such plasmas; -the experimental or theoretical methods of exploring or explaining them; -fusion reactor physics; -reactor concepts; and -fusion technologies. The journal has a dedicated Associate Editor for inertial confinement fusion.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信