Random Chowla's Conjecture for Rademacher Multiplicative Functions

Jake Chinis, Besfort Shala
{"title":"Random Chowla's Conjecture for Rademacher Multiplicative Functions","authors":"Jake Chinis, Besfort Shala","doi":"arxiv-2409.05952","DOIUrl":null,"url":null,"abstract":"We study the distribution of partial sums of Rademacher random multiplicative\nfunctions $(f(n))_n$ evaluated at polynomial arguments. We show that for a\npolynomial $P\\in \\mathbb Z[x]$ that is a product of distinct linear factors or\nan irreducible quadratic satisfying a natural condition, there exists a\nconstant $\\kappa_P>0$ such that \\[ \\frac{1}{\\sqrt{\\kappa_P N}}\\sum_{n\\leq\nN}f(P(n))\\xrightarrow{d}\\mathcal{N}(0,1), \\] as $N\\rightarrow\\infty$, where convergence is in distribution to a standard\n(real) Gaussian. This confirms a conjecture of Najnudel and addresses a\nquestion of Klurman-Shkredov-Xu. We also study large fluctuations of $\\sum_{n\\leq N}f(n^2+1)$ and show that\nthere almost surely exist arbitrarily large values of $N$ such that \\[\n\\Big|\\sum_{n\\leq N}f(n^2+1)\\Big|\\gg \\sqrt{N \\log\\log N}. \\] This matches the\nbound one expects from the law of iterated logarithm.","PeriodicalId":501245,"journal":{"name":"arXiv - MATH - Probability","volume":"5 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Probability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.05952","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We study the distribution of partial sums of Rademacher random multiplicative functions $(f(n))_n$ evaluated at polynomial arguments. We show that for a polynomial $P\in \mathbb Z[x]$ that is a product of distinct linear factors or an irreducible quadratic satisfying a natural condition, there exists a constant $\kappa_P>0$ such that \[ \frac{1}{\sqrt{\kappa_P N}}\sum_{n\leq N}f(P(n))\xrightarrow{d}\mathcal{N}(0,1), \] as $N\rightarrow\infty$, where convergence is in distribution to a standard (real) Gaussian. This confirms a conjecture of Najnudel and addresses a question of Klurman-Shkredov-Xu. We also study large fluctuations of $\sum_{n\leq N}f(n^2+1)$ and show that there almost surely exist arbitrarily large values of $N$ such that \[ \Big|\sum_{n\leq N}f(n^2+1)\Big|\gg \sqrt{N \log\log N}. \] This matches the bound one expects from the law of iterated logarithm.
拉德马赫乘法函数的随机乔拉猜想
我们研究了在多项式参数处求值的拉德马赫随机乘法函数 $(f(n))_n$ 部分和的分布。我们证明,对于 \mathbb Z[x]$ 中的多项式 $P,它是满足自然条件的不同线性因子或不可还原二次方的乘积、存在常数 $/kappa_P>0$,使得\[ \frac{1}{sqrt\kappa_P N}}\sum_{n\leqN}f(P(n))\xrightarrow{d}\mathcal{N}(0,1), \] as $N\rightarrow\infty$, 其中收敛于标准(实)高斯分布。这证实了纳伊努德尔的猜想,并解决了克鲁尔曼-施克雷多夫-徐的问题。我们还研究了 $\sum_{n\leq N}f(n^2+1)$ 的大波动,并证明几乎肯定存在任意大的 $N$ 值,使得 \[\Big|\sum_{n\leq N}f(n^2+1)\Big|\gg \sqrt{N \log\log N}。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信