Finite-time horizon, stopper vs. singular-controller games on the half-line

Andrea Bovo, Tiziano De Angelis
{"title":"Finite-time horizon, stopper vs. singular-controller games on the half-line","authors":"Andrea Bovo, Tiziano De Angelis","doi":"arxiv-2409.06049","DOIUrl":null,"url":null,"abstract":"We prove existence of a value for two-player zero-sum stopper vs.\nsingular-controller games on finite-time horizon, when the underlying dynamics\nis one-dimensional, diffusive and bound to evolve in $[0,\\infty)$. We show that\nthe value is the maximal solution of a variational inequality with both\nobstacle and gradient constraint and satisfying a Dirichlet boundary condition\nat $[0,T)\\times\\{0\\}$. Moreover, we obtain an optimal strategy for the stopper.\nCompared to the existing literature on this topic, we introduce new\nprobabilistic methods to obtain gradient bounds and equi-continuity for the\nsolutions of penalised partial differential equations (PDE) that approximate\nthe variational inequality.","PeriodicalId":501245,"journal":{"name":"arXiv - MATH - Probability","volume":"101 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Probability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.06049","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We prove existence of a value for two-player zero-sum stopper vs. singular-controller games on finite-time horizon, when the underlying dynamics is one-dimensional, diffusive and bound to evolve in $[0,\infty)$. We show that the value is the maximal solution of a variational inequality with both obstacle and gradient constraint and satisfying a Dirichlet boundary condition at $[0,T)\times\{0\}$. Moreover, we obtain an optimal strategy for the stopper. Compared to the existing literature on this topic, we introduce new probabilistic methods to obtain gradient bounds and equi-continuity for the solutions of penalised partial differential equations (PDE) that approximate the variational inequality.
有限时间水平线,半线上的阻止者与奇异控制者博弈
我们证明了在有限时间视界上双人零和阻止者与奇异控制者博弈值的存在性,当底层动力学是一维的、扩散性的并注定在 $[0,\infty)$ 中演化时。我们证明,在 $[0,T)\times\{0\}$ 时,该值是一个变分不等式的最大解,同时具有障碍和梯度约束,并满足迪里希特边界条件。与现有的相关文献相比,我们引入了新的概率方法,以获得近似变分不等式的受罚偏微分方程(PDE)解的梯度边界和等连续性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信