{"title":"A note on the fluctuations of the resolvent traces of a tensor model of sample covariance matrices","authors":"Alicja Dembczak-Kołodziejczyk","doi":"arxiv-2409.06007","DOIUrl":null,"url":null,"abstract":"In this note, we consider a sample covariance matrix of the form\n$$M_{n}=\\sum_{\\alpha=1}^m \\tau_\\alpha {\\mathbf{y}}_{\\alpha}^{(1)} \\otimes\n{\\mathbf{y}}_{\\alpha}^{(2)}({\\mathbf{y}}_{\\alpha}^{(1)} \\otimes\n{\\mathbf{y}}_{\\alpha}^{(2)})^T,$$ where $(\\mathbf{y}_{\\alpha}^{(1)},\\,\n{\\mathbf{y}}_{\\alpha}^{(2)})_{\\alpha}$ are independent vectors uniformly\ndistributed on the unit sphere $S^{n-1}$ and $\\tau_\\alpha \\in \\mathbb{R}_+ $.\nWe show that as $m, n \\to \\infty$, $m/n^2\\to c>0$, the centralized traces of\nthe resolvents,\n$\\mathrm{Tr}(M_n-zI_n)^{-1}-\\mathbf{E}\\mathrm{Tr}(M_n-zI_n)^{-1}$, $\\Im z\\ge\n\\eta_0>0$, converge in distribution to a two-dimensional Gaussian random\nvariable with zero mean and a certain covariance matrix. This work is a\ncontinuation of Dembczak-Ko{\\l}odziejczyk and Lytova (2023), and Lytova (2018).","PeriodicalId":501245,"journal":{"name":"arXiv - MATH - Probability","volume":"178 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Probability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.06007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In this note, we consider a sample covariance matrix of the form
$$M_{n}=\sum_{\alpha=1}^m \tau_\alpha {\mathbf{y}}_{\alpha}^{(1)} \otimes
{\mathbf{y}}_{\alpha}^{(2)}({\mathbf{y}}_{\alpha}^{(1)} \otimes
{\mathbf{y}}_{\alpha}^{(2)})^T,$$ where $(\mathbf{y}_{\alpha}^{(1)},\,
{\mathbf{y}}_{\alpha}^{(2)})_{\alpha}$ are independent vectors uniformly
distributed on the unit sphere $S^{n-1}$ and $\tau_\alpha \in \mathbb{R}_+ $.
We show that as $m, n \to \infty$, $m/n^2\to c>0$, the centralized traces of
the resolvents,
$\mathrm{Tr}(M_n-zI_n)^{-1}-\mathbf{E}\mathrm{Tr}(M_n-zI_n)^{-1}$, $\Im z\ge
\eta_0>0$, converge in distribution to a two-dimensional Gaussian random
variable with zero mean and a certain covariance matrix. This work is a
continuation of Dembczak-Ko{\l}odziejczyk and Lytova (2023), and Lytova (2018).