A note on the fluctuations of the resolvent traces of a tensor model of sample covariance matrices

Alicja Dembczak-Kołodziejczyk
{"title":"A note on the fluctuations of the resolvent traces of a tensor model of sample covariance matrices","authors":"Alicja Dembczak-Kołodziejczyk","doi":"arxiv-2409.06007","DOIUrl":null,"url":null,"abstract":"In this note, we consider a sample covariance matrix of the form\n$$M_{n}=\\sum_{\\alpha=1}^m \\tau_\\alpha {\\mathbf{y}}_{\\alpha}^{(1)} \\otimes\n{\\mathbf{y}}_{\\alpha}^{(2)}({\\mathbf{y}}_{\\alpha}^{(1)} \\otimes\n{\\mathbf{y}}_{\\alpha}^{(2)})^T,$$ where $(\\mathbf{y}_{\\alpha}^{(1)},\\,\n{\\mathbf{y}}_{\\alpha}^{(2)})_{\\alpha}$ are independent vectors uniformly\ndistributed on the unit sphere $S^{n-1}$ and $\\tau_\\alpha \\in \\mathbb{R}_+ $.\nWe show that as $m, n \\to \\infty$, $m/n^2\\to c>0$, the centralized traces of\nthe resolvents,\n$\\mathrm{Tr}(M_n-zI_n)^{-1}-\\mathbf{E}\\mathrm{Tr}(M_n-zI_n)^{-1}$, $\\Im z\\ge\n\\eta_0>0$, converge in distribution to a two-dimensional Gaussian random\nvariable with zero mean and a certain covariance matrix. This work is a\ncontinuation of Dembczak-Ko{\\l}odziejczyk and Lytova (2023), and Lytova (2018).","PeriodicalId":501245,"journal":{"name":"arXiv - MATH - Probability","volume":"178 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Probability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.06007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this note, we consider a sample covariance matrix of the form $$M_{n}=\sum_{\alpha=1}^m \tau_\alpha {\mathbf{y}}_{\alpha}^{(1)} \otimes {\mathbf{y}}_{\alpha}^{(2)}({\mathbf{y}}_{\alpha}^{(1)} \otimes {\mathbf{y}}_{\alpha}^{(2)})^T,$$ where $(\mathbf{y}_{\alpha}^{(1)},\, {\mathbf{y}}_{\alpha}^{(2)})_{\alpha}$ are independent vectors uniformly distributed on the unit sphere $S^{n-1}$ and $\tau_\alpha \in \mathbb{R}_+ $. We show that as $m, n \to \infty$, $m/n^2\to c>0$, the centralized traces of the resolvents, $\mathrm{Tr}(M_n-zI_n)^{-1}-\mathbf{E}\mathrm{Tr}(M_n-zI_n)^{-1}$, $\Im z\ge \eta_0>0$, converge in distribution to a two-dimensional Gaussian random variable with zero mean and a certain covariance matrix. This work is a continuation of Dembczak-Ko{\l}odziejczyk and Lytova (2023), and Lytova (2018).
关于样本协方差矩阵张量模型解析痕量波动的说明
在本说明中我们考虑的样本协方差矩阵的形式为$$M_{n}=\sum_{\alpha=1}^m \tau_\alpha {\mathbf{y}}_\{alpha}^{(1)}\otimes{\mathbf{y}}_{\alpha}^{(2)}({\mathbf{y}}_{\alpha}^{(1)} \otimes{\mathbf{y}}_{\alpha}^{(2)})^T,$$ 其中 $(\mathbf{y}_{\alpha}^{(1)},\,{\mathbf{y}}_{\alpha}^{(2)})_{\alpha}$ 是均匀分布在单位球面 $S^{n-1}$ 上的独立向量,并且 $\tau_\alpha \ in \mathbb{R}_+ $.我们证明,当 $m, n 到 \infty$, $m/n^2\to c>0$ 时,解析子的集中迹线,$\mathrm{Tr}(M_n-zI_n)^{-1}-\mathbf{E}\mathrm{Tr}(M_n-zI_n)^{-1}$、$\Im z\ge\eta_0>0$, 在分布上收敛于具有零均值和一定协方差矩阵的二维高斯随机变量。这项工作是 Dembczak-Ko{\l}odziejczyk 和 Lytova (2023) 以及 Lytova (2018) 的继续。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信