Jump stochastic differential equations for the characterisation of the Bragg peak in proton beam radiotherapy

Alastair Crossley, Karen Habermann, Emma Horton, Jere Koskela, Andreas E. Kyprianou, Sarah Osman
{"title":"Jump stochastic differential equations for the characterisation of the Bragg peak in proton beam radiotherapy","authors":"Alastair Crossley, Karen Habermann, Emma Horton, Jere Koskela, Andreas E. Kyprianou, Sarah Osman","doi":"arxiv-2409.06965","DOIUrl":null,"url":null,"abstract":"Proton beam radiotherapy stands at the forefront of precision cancer\ntreatment, leveraging the unique physical interactions of proton beams with\nhuman tissue to deliver minimal dose upon entry and deposit the therapeutic\ndose precisely at the so-called Bragg peak, with no residual dose beyond this\npoint. The Bragg peak is the characteristic maximum that occurs when plotting\nthe curve describing the rate of energy deposition along the length of the\nproton beam. Moreover, as a natural phenomenon, it is caused by an increase in\nthe rate of nuclear interactions of protons as their energy decreases. From an\nanalytical perspective, Bortfeld proposed a parametric family of curves that\ncan be accurately calibrated to data replicating the Bragg peak in one\ndimension. We build, from first principles, the very first mathematical model\ndescribing the energy deposition of protons. Our approach uses stochastic\ndifferential equations and affords us the luxury of defining the natural\nanalogue of the Bragg curve in two or three dimensions. This work is purely\ntheoretical and provides a new mathematical framework which is capable of\nencompassing models built using Geant4 Monte Carlo, at one extreme, to pencil\nbeam calculations with Bortfeld curves at the other.","PeriodicalId":501245,"journal":{"name":"arXiv - MATH - Probability","volume":"5 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Probability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.06965","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Proton beam radiotherapy stands at the forefront of precision cancer treatment, leveraging the unique physical interactions of proton beams with human tissue to deliver minimal dose upon entry and deposit the therapeutic dose precisely at the so-called Bragg peak, with no residual dose beyond this point. The Bragg peak is the characteristic maximum that occurs when plotting the curve describing the rate of energy deposition along the length of the proton beam. Moreover, as a natural phenomenon, it is caused by an increase in the rate of nuclear interactions of protons as their energy decreases. From an analytical perspective, Bortfeld proposed a parametric family of curves that can be accurately calibrated to data replicating the Bragg peak in one dimension. We build, from first principles, the very first mathematical model describing the energy deposition of protons. Our approach uses stochastic differential equations and affords us the luxury of defining the natural analogue of the Bragg curve in two or three dimensions. This work is purely theoretical and provides a new mathematical framework which is capable of encompassing models built using Geant4 Monte Carlo, at one extreme, to pencil beam calculations with Bortfeld curves at the other.
用于描述质子束放射治疗布拉格峰特征的跳跃式随机微分方程
质子束放射治疗是精准癌症治疗的前沿技术,它利用质子束与人体组织之间独特的物理相互作用,在进入人体组织时将剂量降至最低,并将治疗剂量精确地沉积在所谓的布拉格峰上,在此点之外没有任何残余剂量。布拉格峰是沿着质子束长度绘制能量沉积率曲线时出现的特征性最大值。此外,作为一种自然现象,布拉格峰是由质子能量下降时核相互作用速率增加引起的。从分析的角度来看,波特菲尔德提出了一个曲线参数族,可以精确地校准复制布拉格峰的一维数据。我们从第一原理出发,建立了第一个描述质子能量沉积的数学模型。我们的方法使用随机微分方程,使我们能够在二维或三维空间中定义布拉格曲线的自然类似物。这项工作纯粹是理论性的,它提供了一个新的数学框架,能够涵盖从使用 Geant4 蒙特卡洛建立的模型到使用波特菲尔德曲线进行的铅笔光束计算。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信