Tempered space-time fractional negative binomial process

Shilpa, Ashok Kumar Pathak, Aditya Maheshwari
{"title":"Tempered space-time fractional negative binomial process","authors":"Shilpa, Ashok Kumar Pathak, Aditya Maheshwari","doi":"arxiv-2409.07044","DOIUrl":null,"url":null,"abstract":"In this paper, we define a tempered space-time fractional negative binomial\nprocess (TSTFNBP) by subordinating the fractional Poisson process with an\nindependent tempered Mittag-Leffler L\\'{e}vy subordinator. We study its\ndistributional properties and its connection to partial differential equations.\nWe derive the asymptotic behavior of its fractional order moments and\nlong-range dependence property. It is shown that the TSTFNBP exhibits\noverdispersion. We also obtain some results related to the first-passage time.","PeriodicalId":501245,"journal":{"name":"arXiv - MATH - Probability","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Probability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.07044","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we define a tempered space-time fractional negative binomial process (TSTFNBP) by subordinating the fractional Poisson process with an independent tempered Mittag-Leffler L\'{e}vy subordinator. We study its distributional properties and its connection to partial differential equations. We derive the asymptotic behavior of its fractional order moments and long-range dependence property. It is shown that the TSTFNBP exhibits overdispersion. We also obtain some results related to the first-passage time.
节制时空分数负二项过程
本文通过将分数泊松过程与独立的回火米塔格-勒夫勒 L\'{e}vy 附属器进行附属,定义了回火时空分数负二项式过程(TSTFNBP)。我们研究了它的分布特性及其与偏微分方程的联系,并推导出其分数阶矩的渐近行为和长程依赖特性。结果表明,TSTFNBP 表现出过度离散性。我们还得到了一些与首过时间相关的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信