Dimensions of harmonic measures on non-autonomous Cantor sets

Athanasios Batakis, Guillaume Havard
{"title":"Dimensions of harmonic measures on non-autonomous Cantor sets","authors":"Athanasios Batakis, Guillaume Havard","doi":"arxiv-2409.08019","DOIUrl":null,"url":null,"abstract":"We consider Non Autonomous Conformal Iterative Function Systems (NACIFS) and\ntheir limit set. Our main concern is harmonic measure and its dimensions :\nHausdorff and Packing. We prove that this two dimensions are continuous under\nperturbations and that they verify Bowen's and Manning's type formulas. In\norder to do so we prove general results about measures, and more generally\nabout positive functionals, defined on a symbolic space, developing tools from\nthermodynamical formalism in a non-autonomous setting.","PeriodicalId":501245,"journal":{"name":"arXiv - MATH - Probability","volume":"21 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Probability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.08019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We consider Non Autonomous Conformal Iterative Function Systems (NACIFS) and their limit set. Our main concern is harmonic measure and its dimensions : Hausdorff and Packing. We prove that this two dimensions are continuous under perturbations and that they verify Bowen's and Manning's type formulas. In order to do so we prove general results about measures, and more generally about positive functionals, defined on a symbolic space, developing tools from thermodynamical formalism in a non-autonomous setting.
非自治康托尔集上的调和度量维数
我们考虑非自治共形迭代函数系统(NACIFS)及其极限集。我们主要关注调和度量及其维度:Hausdorff 和 Packing。我们证明这两个维度在扰动下是连续的,而且它们验证了鲍温和曼宁类型公式。为此,我们证明了定义在符号空间上的度量的一般结果,以及更广义的正函数的一般结果,并在非自治环境中开发了热力学形式主义的工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信