Limit Profile for the Bernoulli--Laplace Urn

Sam Olesker-Taylor, Dominik Schmid
{"title":"Limit Profile for the Bernoulli--Laplace Urn","authors":"Sam Olesker-Taylor, Dominik Schmid","doi":"arxiv-2409.07900","DOIUrl":null,"url":null,"abstract":"We analyse the convergence to equilibrium of the Bernoulli--Laplace urn\nmodel: initially, one urn contains $k$ red balls and a second $n-k$ blue balls;\nin each step, a pair of balls is chosen uniform and their locations are\nswitched. Cutoff is known to occur at $\\tfrac12 n \\log \\min\\{k, \\sqrt n\\}$ with\nwindow order $n$ whenever $1 \\ll k \\le \\tfrac12 n$. We refine this by\ndetermining the limit profile: a function $\\Phi$ such that \\[ d_\\mathsf{TV}\\bigl( \\tfrac12 n \\log \\min\\{k, \\sqrt n\\} + \\theta n \\bigr) \\to \\Phi(\\theta) \\quad\\text{as}\\quad n \\to \\infty \\quad\\text{for all}\\quad \\theta \\in \\mathbb R. \\] Our main technical contribution, of independent\ninterest, approximates a rescaled chain by a diffusion on $\\mathbb R$ when $k\n\\gg \\sqrt n$, and uses its explicit law as a Gaussian process.","PeriodicalId":501245,"journal":{"name":"arXiv - MATH - Probability","volume":"46 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Probability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.07900","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We analyse the convergence to equilibrium of the Bernoulli--Laplace urn model: initially, one urn contains $k$ red balls and a second $n-k$ blue balls; in each step, a pair of balls is chosen uniform and their locations are switched. Cutoff is known to occur at $\tfrac12 n \log \min\{k, \sqrt n\}$ with window order $n$ whenever $1 \ll k \le \tfrac12 n$. We refine this by determining the limit profile: a function $\Phi$ such that \[ d_\mathsf{TV}\bigl( \tfrac12 n \log \min\{k, \sqrt n\} + \theta n \bigr) \to \Phi(\theta) \quad\text{as}\quad n \to \infty \quad\text{for all}\quad \theta \in \mathbb R. \] Our main technical contribution, of independent interest, approximates a rescaled chain by a diffusion on $\mathbb R$ when $k \gg \sqrt n$, and uses its explicit law as a Gaussian process.
伯努利-拉普拉斯瓮的极限轮廓
我们分析了伯努利--拉普拉斯瓮模型向均衡收敛的过程:最初,一个瓮包含 $k$ 红球,第二个瓮包含 $n-k$ 蓝球;在每一步中,均匀地选择一对球,并切换它们的位置。众所周知,当 1 \ll k \le \tfrac12 n$ 时,截止点会出现在 $\tfrac12 n \log \min\{k, \sqrt n\}$,窗口阶数为 $n$。我们通过确定极限轮廓来完善这一点:a function $\Phi$ such that \[ d_\mathsf{TV}\bigl( \tfrac12 n \log \min\{k, \sqrt n\} + \theta n \bigr) \to \Phi(\theta) \quad\text{as}\quad n \to \infty \quad\text{for all}\quad \theta \in \mathbb R.\]我们的主要技术贡献是,当 $k\gg \sqrt n$ 时,用 $\mathbb R$ 上的扩散来近似一个重标度链,并将其显式规律作为一个高斯过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信