X. Garbet, P. Donnel, L. De Gianni, Z. Qu, Y. Melka, Y. Sarazin, V. Grandgirard, K. Obrejan, E. Bourne and G. Dif-Pradalier
{"title":"The effect of shaping on trapped electron mode stability: an analytical model","authors":"X. Garbet, P. Donnel, L. De Gianni, Z. Qu, Y. Melka, Y. Sarazin, V. Grandgirard, K. Obrejan, E. Bourne and G. Dif-Pradalier","doi":"10.1088/1741-4326/ad6e9f","DOIUrl":null,"url":null,"abstract":"A reduced model for trapped electron mode stability has been developed, which incorporates the basic effects of magnetic surface shaping, in particular, elongation and triangularity. This model shows that while elongation is stabilising, though weakly, negative triangularity usually leads to a more unstable plasma. This is in marked contrast with the experimental evidence of a better confinement at negative triangularity, and with recent gyrokinetic linear simulations. This paradox is solved when finite orbit and/or finite mode extent along field lines (mode ballooning) effects are included. These effects give more weight to particles trapped at low bounce angles, which are those that exhibit lower precession frequencies at negative—compared to positive—triangularity. As a result, the interchange growth rate becomes lower at negative triangularity and large temperature gradients, so that negative triangularity appears to have an overall stabilising effect. Mode ballooning appears to play the most important role in this reversal of stability.","PeriodicalId":19379,"journal":{"name":"Nuclear Fusion","volume":"21 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear Fusion","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1741-4326/ad6e9f","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, FLUIDS & PLASMAS","Score":null,"Total":0}
引用次数: 0
Abstract
A reduced model for trapped electron mode stability has been developed, which incorporates the basic effects of magnetic surface shaping, in particular, elongation and triangularity. This model shows that while elongation is stabilising, though weakly, negative triangularity usually leads to a more unstable plasma. This is in marked contrast with the experimental evidence of a better confinement at negative triangularity, and with recent gyrokinetic linear simulations. This paradox is solved when finite orbit and/or finite mode extent along field lines (mode ballooning) effects are included. These effects give more weight to particles trapped at low bounce angles, which are those that exhibit lower precession frequencies at negative—compared to positive—triangularity. As a result, the interchange growth rate becomes lower at negative triangularity and large temperature gradients, so that negative triangularity appears to have an overall stabilising effect. Mode ballooning appears to play the most important role in this reversal of stability.
期刊介绍:
Nuclear Fusion publishes articles making significant advances to the field of controlled thermonuclear fusion. The journal scope includes:
-the production, heating and confinement of high temperature plasmas;
-the physical properties of such plasmas;
-the experimental or theoretical methods of exploring or explaining them;
-fusion reactor physics;
-reactor concepts; and
-fusion technologies.
The journal has a dedicated Associate Editor for inertial confinement fusion.