Kinetic profile inference with outlier detection using support vector machine regression and Gaussian process regression

IF 3.5 1区 物理与天体物理 Q1 PHYSICS, FLUIDS & PLASMAS
Minseok Kim, W.H. Ko, Sehyun Kwak, Semin Joung, Wonjun Lee, B. Kim, D. Kim, J.H. Lee, Choongki Sung, Yong-Su Na and Y.-C. Ghim
{"title":"Kinetic profile inference with outlier detection using support vector machine regression and Gaussian process regression","authors":"Minseok Kim, W.H. Ko, Sehyun Kwak, Semin Joung, Wonjun Lee, B. Kim, D. Kim, J.H. Lee, Choongki Sung, Yong-Su Na and Y.-C. Ghim","doi":"10.1088/1741-4326/ad7304","DOIUrl":null,"url":null,"abstract":"We propose an outlier-resilient Gaussian process regression (GPR) model supported by support vector machine regression (SVMR) for kinetic profile inference. GPR, being a non-parametric regression using Bayesian statistics, has advantages in that it imposes no constraints on profile shapes and can be readily used to integrate different kinds of diagnostics, while it is vulnerable to the presence of even a single outlier among a measured dataset. As an outlier classifier, an optimized SVMR is developed based only on the measurements. Hyper-parameters of the developed GPR model with informative prior distributions are treated in two different ways, i.e. maximum a posteriori (MAP) estimator and marginalization using a Markov Chain Monte Carlo sampler. Our SVMR-supported GPR model is applied to infer ion temperature Ti profiles using measured data from the KSTAR charge exchange spectroscopy system. The GPR-inferred Ti profiles with and without an outlier are compared and show prominent improvement when the outlier is removed by the SVMR. Ti profiles inferred with the MAP estimator and the marginalization scheme are compared. They are noticeably different when observation uncertainties are not small enough, and the marginalization scheme generally provides a smoother profile.","PeriodicalId":19379,"journal":{"name":"Nuclear Fusion","volume":"9 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear Fusion","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1741-4326/ad7304","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, FLUIDS & PLASMAS","Score":null,"Total":0}
引用次数: 0

Abstract

We propose an outlier-resilient Gaussian process regression (GPR) model supported by support vector machine regression (SVMR) for kinetic profile inference. GPR, being a non-parametric regression using Bayesian statistics, has advantages in that it imposes no constraints on profile shapes and can be readily used to integrate different kinds of diagnostics, while it is vulnerable to the presence of even a single outlier among a measured dataset. As an outlier classifier, an optimized SVMR is developed based only on the measurements. Hyper-parameters of the developed GPR model with informative prior distributions are treated in two different ways, i.e. maximum a posteriori (MAP) estimator and marginalization using a Markov Chain Monte Carlo sampler. Our SVMR-supported GPR model is applied to infer ion temperature Ti profiles using measured data from the KSTAR charge exchange spectroscopy system. The GPR-inferred Ti profiles with and without an outlier are compared and show prominent improvement when the outlier is removed by the SVMR. Ti profiles inferred with the MAP estimator and the marginalization scheme are compared. They are noticeably different when observation uncertainties are not small enough, and the marginalization scheme generally provides a smoother profile.
利用支持向量机回归和高斯过程回归进行带离群点检测的动力学剖面推断
我们提出了一种由支持向量机回归(SVMR)支持的抗离群高斯过程回归(GPR)模型,用于动力学剖面推断。高斯过程回归是一种使用贝叶斯统计的非参数回归,它的优点是对剖面形状不加限制,可随时用于整合不同类型的诊断,但它也容易受到测量数据集中即使是一个离群点的影响。作为离群点分类器,我们只根据测量数据开发了一种优化的 SVMR。所开发的具有信息先验分布的 GPR 模型的超参数以两种不同的方式处理,即最大后验(MAP)估计器和使用马尔可夫链蒙特卡罗采样器的边际化。利用 KSTAR 电荷交换光谱系统的测量数据,我们将 SVMR 支持的 GPR 模型应用于推断离子温度 Ti 曲线。比较了有离群点和无离群点的 GPR 推断 Ti 曲线,结果表明 SVMR 去除离群点后,推断结果有明显改善。比较了使用 MAP 估计器和边际化方案推断出的 Ti 剖面。在观测不确定性不够小的情况下,它们之间存在明显差异,边际化方案通常能提供更平滑的曲线。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nuclear Fusion
Nuclear Fusion 物理-物理:核物理
CiteScore
6.30
自引率
39.40%
发文量
411
审稿时长
2.6 months
期刊介绍: Nuclear Fusion publishes articles making significant advances to the field of controlled thermonuclear fusion. The journal scope includes: -the production, heating and confinement of high temperature plasmas; -the physical properties of such plasmas; -the experimental or theoretical methods of exploring or explaining them; -fusion reactor physics; -reactor concepts; and -fusion technologies. The journal has a dedicated Associate Editor for inertial confinement fusion.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信