Decoding the human brain tissue response to radiofrequency excitation using a biophysical-model-free deep MRI on a chip framework

Dinor NagarSchool of Electrical Engineering, Tel Aviv University, Tel Aviv, Israel, Moritz ZaissInstitute of Neuroradiology, Friedrich-Alexander Universitat Erlangen-NurnbergDepartment of Artificial Intelligence in Biomedical Engineering, Friedrich-Alexander Universitat Erlangen-Nurnberg, Erlangen, Germany, Or PerlmanDepartment of Biomedical Engineering, Tel Aviv University, Tel Aviv, IsraelSagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
{"title":"Decoding the human brain tissue response to radiofrequency excitation using a biophysical-model-free deep MRI on a chip framework","authors":"Dinor NagarSchool of Electrical Engineering, Tel Aviv University, Tel Aviv, Israel, Moritz ZaissInstitute of Neuroradiology, Friedrich-Alexander Universitat Erlangen-NurnbergDepartment of Artificial Intelligence in Biomedical Engineering, Friedrich-Alexander Universitat Erlangen-Nurnberg, Erlangen, Germany, Or PerlmanDepartment of Biomedical Engineering, Tel Aviv University, Tel Aviv, IsraelSagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel","doi":"arxiv-2408.08376","DOIUrl":null,"url":null,"abstract":"Magnetic resonance imaging (MRI) relies on radiofrequency (RF) excitation of\nproton spin. Clinical diagnosis requires a comprehensive collation of\nbiophysical data via multiple MRI contrasts, acquired using a series of RF\nsequences that lead to lengthy examinations. Here, we developed a vision\ntransformer-based framework that captures the spatiotemporal magnetic signal\nevolution and decodes the brain tissue response to RF excitation, constituting\nan MRI on a chip. Following a per-subject rapid calibration scan (28.2 s), a\nwide variety of image contrasts including fully quantitative molecular, water\nrelaxation, and magnetic field maps can be generated automatically. The method\nwas validated across healthy subjects and a cancer patient in two different\nimaging sites, and proved to be 94% faster than alternative protocols. The deep\nMRI on a chip (DeepMonC) framework may reveal the molecular composition of the\nhuman brain tissue in a wide range of pathologies, while offering clinically\nattractive scan times.","PeriodicalId":501517,"journal":{"name":"arXiv - QuanBio - Neurons and Cognition","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuanBio - Neurons and Cognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.08376","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Magnetic resonance imaging (MRI) relies on radiofrequency (RF) excitation of proton spin. Clinical diagnosis requires a comprehensive collation of biophysical data via multiple MRI contrasts, acquired using a series of RF sequences that lead to lengthy examinations. Here, we developed a vision transformer-based framework that captures the spatiotemporal magnetic signal evolution and decodes the brain tissue response to RF excitation, constituting an MRI on a chip. Following a per-subject rapid calibration scan (28.2 s), a wide variety of image contrasts including fully quantitative molecular, water relaxation, and magnetic field maps can be generated automatically. The method was validated across healthy subjects and a cancer patient in two different imaging sites, and proved to be 94% faster than alternative protocols. The deep MRI on a chip (DeepMonC) framework may reveal the molecular composition of the human brain tissue in a wide range of pathologies, while offering clinically attractive scan times.
利用芯片上的无生物物理模型深度磁共振成像框架解码人脑组织对射频激励的反应
磁共振成像(MRI)依赖于射频(RF)激发质子自旋。临床诊断需要通过多种核磁共振成像对比全面整理生物物理数据,而这些数据是通过一系列射频序列获取的,这就导致了冗长的检查。在这里,我们开发了一种基于视觉变换器的框架,它能捕捉时空磁信号演变并解码脑组织对射频激励的反应,从而构成芯片上的核磁共振成像。在对每个受试者进行快速校准扫描(28.2 秒)后,可自动生成各种图像对比,包括完全定量的分子图、水松弛图和磁场图。该方法在两个不同的成像部位对健康受试者和一名癌症患者进行了验证,证明比其他方案快 94%。芯片上的深度核磁共振成像(DeepMonC)框架可以揭示多种病理情况下人类脑组织的分子组成,同时提供具有临床吸引力的扫描时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信