Examining collinearities

Pub Date : 2024-08-29 DOI:10.1111/anzs.12425
Zillur R. Shabuz, Paul H. Garthwaite
{"title":"Examining collinearities","authors":"Zillur R. Shabuz,&nbsp;Paul H. Garthwaite","doi":"10.1111/anzs.12425","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>The cos-max method is a little-known method of identifying collinearities. It is based on the cos-max transformation, which makes minimal adjustment to a set of vectors to create orthogonal components with a one-to-one correspondence between the original vectors and the components. The aim of the transformation is that each vector should be close to the orthogonal component with which it is paired. Vectors involved in a collinearity must be adjusted substantially in order to create orthogonal components, while other vectors will typically be adjusted far less. The cos-max method uses the size of adjustments to identify collinearities. It gives a coherent relationship between collinear sets of variables and variance inflation factors (VIFs) and identifies collinear sets using more information than traditional methods. In this paper we describe these features of the method and examine its performance in examples, comparing it with alternative methods. In each example, the collinearities identified by the cos-max method only contained variables with high VIFs and contained all variables with high VIFs. The collinearities identified by other methods did not have such a close link to VIFs. Also, the collinearities identified by the cos-max method were as simple as or simpler than those given by other methods, with less overlap between collinearities in the variables that they contained.</p>\n </div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/anzs.12425","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The cos-max method is a little-known method of identifying collinearities. It is based on the cos-max transformation, which makes minimal adjustment to a set of vectors to create orthogonal components with a one-to-one correspondence between the original vectors and the components. The aim of the transformation is that each vector should be close to the orthogonal component with which it is paired. Vectors involved in a collinearity must be adjusted substantially in order to create orthogonal components, while other vectors will typically be adjusted far less. The cos-max method uses the size of adjustments to identify collinearities. It gives a coherent relationship between collinear sets of variables and variance inflation factors (VIFs) and identifies collinear sets using more information than traditional methods. In this paper we describe these features of the method and examine its performance in examples, comparing it with alternative methods. In each example, the collinearities identified by the cos-max method only contained variables with high VIFs and contained all variables with high VIFs. The collinearities identified by other methods did not have such a close link to VIFs. Also, the collinearities identified by the cos-max method were as simple as or simpler than those given by other methods, with less overlap between collinearities in the variables that they contained.

分享
查看原文
检查共线性
摘要 cos-max 法是一种鲜为人知的识别共线性的方法。它以 cos-max 变换为基础,对一组向量进行最小调整,以创建正交分量,并在原始向量和分量之间建立一一对应关系。变换的目的是使每个向量都能接近与其配对的正交分量。为了创建正交分量,必须对涉及共线性的向量进行大幅调整,而其他向量的调整幅度通常要小得多。cos-max 方法使用调整的大小来识别共线性。与传统方法相比,该方法在共线变量集和方差膨胀因子(VIF)之间给出了一种连贯的关系,并利用更多的信息来识别共线变量集。在本文中,我们介绍了该方法的这些特点,并通过实例检验了其性能,同时将其与其他方法进行了比较。在每个例子中,cos-max 方法识别出的共线性只包含高 VIF 的变量,也包含所有高 VIF 的变量。其他方法识别出的共线性与 VIF 没有如此密切的联系。此外,cos-max 方法确定的共线性与其他方法确定的共线性一样简单,甚至更简单,其包含的变量共线性之间的重叠较少。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信