DCMSA: Multi-Head Self-Attention Mechanism Based on Deformable Convolution For Seismic Data Denoising

Wang Mingwei, Li Yong, Liu Yingtian, Peng Junheng, Li Huating
{"title":"DCMSA: Multi-Head Self-Attention Mechanism Based on Deformable Convolution For Seismic Data Denoising","authors":"Wang Mingwei, Li Yong, Liu Yingtian, Peng Junheng, Li Huating","doi":"arxiv-2408.06963","DOIUrl":null,"url":null,"abstract":"When dealing with seismic data, diffusion models often face challenges in\nadequately capturing local features and expressing spatial relationships. This\nlimitation makes it difficult for diffusion models to remove noise from complex\nstructures effectively. To tackle this issue, we propose a novel convolutional\nattention mechanism Multi-head Self-attention mechanism based on Deformable\nconvolution (DCMSA) achieving efficient fusion of diffusion models with\nconvolutional attention. The implementation of DCMSA is as follows: First, we\nintegrate DCMSA into the UNet architecture to enhance the network's capability\nin recognizing and processing complex seismic data. Next, the diffusion model\nutilizes the UNet enhanced with DCMSA to process noisy data. The results\nindicate that this method addresses the shortcomings of diffusion models in\ncapturing local features and expressing spatial relationships effectively,\nproving superior to traditional diffusion models and standard neural networks\nin noise suppression and preserving meaningful seismic data information.","PeriodicalId":501270,"journal":{"name":"arXiv - PHYS - Geophysics","volume":"15 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Geophysics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.06963","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

When dealing with seismic data, diffusion models often face challenges in adequately capturing local features and expressing spatial relationships. This limitation makes it difficult for diffusion models to remove noise from complex structures effectively. To tackle this issue, we propose a novel convolutional attention mechanism Multi-head Self-attention mechanism based on Deformable convolution (DCMSA) achieving efficient fusion of diffusion models with convolutional attention. The implementation of DCMSA is as follows: First, we integrate DCMSA into the UNet architecture to enhance the network's capability in recognizing and processing complex seismic data. Next, the diffusion model utilizes the UNet enhanced with DCMSA to process noisy data. The results indicate that this method addresses the shortcomings of diffusion models in capturing local features and expressing spatial relationships effectively, proving superior to traditional diffusion models and standard neural networks in noise suppression and preserving meaningful seismic data information.
DCMSA:基于可变形卷积的地震数据去噪多头自适应机制
在处理地震数据时,扩散模型往往面临着无法充分捕捉局部特征和表达空间关系的挑战。这种限制使得扩散模型难以有效地去除复杂结构中的噪声。针对这一问题,我们提出了一种新颖的卷积注意力机制--基于可变形卷积的多头自注意力机制(DCMSA),实现了扩散模型与卷积注意力的高效融合。DCMSA 的实现过程如下:首先,我们将 DCMSA 集成到 UNet 架构中,以增强网络识别和处理复杂地震数据的能力。接下来,扩散模型利用经过 DCMSA 增强的 UNet 处理噪声数据。结果表明,该方法解决了扩散模型在捕捉局部特征和有效表达空间关系方面的不足,在噪声抑制和保留有意义的地震数据信息方面优于传统扩散模型和标准神经网络。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信