Jamming, Yielding, and Rheology during Submerged Granular Avalanche

Zhuan Ge, Teng Man, Kimberly M. Hill, Yujie Wang, Sergio Andres Galindo-Torres
{"title":"Jamming, Yielding, and Rheology during Submerged Granular Avalanche","authors":"Zhuan Ge, Teng Man, Kimberly M. Hill, Yujie Wang, Sergio Andres Galindo-Torres","doi":"arxiv-2408.13730","DOIUrl":null,"url":null,"abstract":"Jamming transitions and the rheology of granular avalanches in fluids are\ninvestigated using experiments and numerical simulations. Simulations use the\nlattice-Boltzmann method coupled with the discrete element method, providing\ndetailed stress and deformation data. Both simulations and experiments present\na perfect match with each other in carefully conducted deposition experiments,\nvalidating the simulation method. We analyze transient rheological laws and\njamming transitions using our recently introduced length-scale ratio $G$. $G$\nserves as a unified metric for the pressure and shear rate capturing the\ndynamics of sheared fluid-granular systems. Two key transition points, $G_{Y}$\nand $G_{0}$, categorize the material's state into solid-like, creeping, and\nfluid-like states. Yielding at $G_{Y}$ marks the transition from solid-like to\ncreeping, while $G_{0}$ signifies the shift to the fluid-like state. The\n$\\mu-G$ relationship converges towards the equilibrium $\\mu_{eq}(G)$ after\n$G>G_0$ showing the critical point where the established rheological laws for\nsteady states apply during transient conditions.","PeriodicalId":501270,"journal":{"name":"arXiv - PHYS - Geophysics","volume":"2 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Geophysics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.13730","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Jamming transitions and the rheology of granular avalanches in fluids are investigated using experiments and numerical simulations. Simulations use the lattice-Boltzmann method coupled with the discrete element method, providing detailed stress and deformation data. Both simulations and experiments present a perfect match with each other in carefully conducted deposition experiments, validating the simulation method. We analyze transient rheological laws and jamming transitions using our recently introduced length-scale ratio $G$. $G$ serves as a unified metric for the pressure and shear rate capturing the dynamics of sheared fluid-granular systems. Two key transition points, $G_{Y}$ and $G_{0}$, categorize the material's state into solid-like, creeping, and fluid-like states. Yielding at $G_{Y}$ marks the transition from solid-like to creeping, while $G_{0}$ signifies the shift to the fluid-like state. The $\mu-G$ relationship converges towards the equilibrium $\mu_{eq}(G)$ after $G>G_0$ showing the critical point where the established rheological laws for steady states apply during transient conditions.
水下颗粒崩落过程中的堵塞、屈服和流变
通过实验和数值模拟研究了流体中的堵塞转换和颗粒雪崩的流变学。模拟采用了格子-玻尔兹曼法和离散元法,提供了详细的应力和变形数据。在精心进行的沉积实验中,模拟和实验结果完全吻合,验证了模拟方法。我们使用最近引入的长度尺度比 $G$ 分析了瞬态流变规律和堵塞转换。$G$ 是压力和剪切率的统一度量,它捕捉了剪切流体-颗粒系统的动力学。$G_{Y}$ 和 $G_{0}$这两个关键转换点将材料状态分为类固态、蠕变态和类流态。在 $G_{Y}$ 处屈服标志着从类固态向蠕变态的转变,而 $G_{0}$ 则表示向类流体态的转变。在$G>G_0$之后,$\mu-G$关系向平衡态$\mu_{eq}(G)$收敛,这表明在瞬态条件下,已建立的稳态流变学定律适用于临界点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信